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Abstract—For the allocation of indivisible goods to a number
of agents, appearing in many wireless infrastructure problems,
common characteristics of fairness like proportionality, envy-
freeness, or equity are hard to achieve or even impossible. As one
of the few feasible allocation approaches, the Knaster procedure
for item allocation is based on user bidding for items and adds
an additional settlement step where users with higher benefit
compensate users with lower benefit by payments. Here, the
Knaster procedure is extended to a general allocation procedure,
where the payments are considered as a measure for unfairness
of a certain allocation. By minimizing the maximal payment, a
fair state is uniquely specified. The approach is studied within the
domain of wireless channel allocation and it is demonstrated that
by following the proposed approach, deviations from proportional
fairness can be kept small.

I. INTRODUCTION

In a wireless infrastructure, many allocation tasks of in-
divisible goods appear, be it in the buffer management and
relaying in OFDMA [1], [2], or in the allocation of radio
channels to mobile stations [3]. The distribution of indivisible
goods is characterized such that the goods to distribute cannot
be physically divided (like one relay station) or would loose
their value on any splitting attempt. However, the fair division
of indivisible goods is essentially an ill-posed problem, as
there is no guarantee that basic requirements of fairness like
proportionality, envy-freeness or equitability/equity can ever
be fulfilled.

To consider a simple example, take the distribution of 3
items among 2 agents. Both agents have their own values for
these 3 items. Here, agent 1 assigns values 10, 2, and 4 to these
items, while agent 2 assigns values 8, 1 and 1. It means item 1
has the highest value for both agents. But in any allocation of
items, item 1 either goes to agent 1 or to agent 2. In either case,
the other agent would not achieve a proportional allocation.
The total value of all items for agent 1 is 10+2+4 = 16 and for
a proportional allocation, agent 1 would need to gain a value
of at least 16/2 = 8. For agent 2, a proportional allocation
would have a value of at least (8+1+1)/2 = 5. Then, giving
item 1 to agent 1 would leave less than value 2 for agent 2,
and giving item 1 to agent 2 would leave less than 6 for agent
1 - no allocation would be proportional fair to all agents.

This simple example demonstrates the general problem
with allocation of indivisible goods, especially in the case of
smaller numbers of items or agents. It cannot be handled in
this original problem representation. Therefore, most work on
fair division has focused on divisible goods, and a growing

number of successful algorithms have been proposed. With
regard to indivisible goods, only a few numbers of approaches
have been presented, and they share the common feature to
redefine the original allocation problem in a suitable way.

One example is the method referred to as Luca’s marker
method in [4]. It requires that each agent splits the items into
batches (or piles, the number of batches equals the number
n of agents) of same total value. At first an independent
referee writes the items as a list (from left to right on a
piece of paper) in some order (note that while this order is
decided independently, it has some effect on the outcome of
the procedure). Then, each agent puts n marker lines between
items on the list to indicate batches of same value for her.
Once accomplished, the procedure goes in rounds agent by
agent. In round 1, the agent that put the left-most marker
line on the list receives everything up to this marker line.
Then, these items are removed, as well as the marker lines of
the selected agent. In round 2, among the remaining marker
lines the second left-most is selected, and the corresponding
agent receives everything between this marker line and her
left-most marker line. Again, the items are removed as well as
the marker lines of the selected agent. The procedure repeats
for the number of agents. In the example before, assume that
agent 1 puts the first marker between item 1 and item 2, while
agent 2 puts the first marker line between items 2 and 3. This
way, agent 1 indicates that item 1 has the same value to her
than item 2 and 3 together, and agent 2 indicates same value
of items 1 and 2 together as item 3. Then, the first marker line
is with agent 1, and she receives item 1. The next marker line
would be the one at the end of the list of 3 items, and agent
2 receives item 3. Item 2 remains unassigned.

This procedure ensures a proportional and envy-free allo-
cation. Each agent receives a set of items that has a value of
exactly 1/n with n the number of agents. By doing assignment
in rounds, also envy-freeness can be easily seen. However,
the price to achieve a fair solution is amending the original
problem. It requires that the agents are able to specify equal-
valued batches. In addition, the procedure will not allocate all
items to agents, as in the example above, where item 2 was
not assigned to any agent. In fact, an attempt to allocate these
items to agents as well could easily break envy-freeness.

This longer discussion should illustrate the inherent prob-
lems of allocating indivisible items and that they can only
be handled by amending the original problem. In a different
approach, today known as Knaster procedure [5], the problem
is modified by adding a settlement among the agents. In



its original form, each agent makes a bid for the goods.
Then, for each item it goes to the agent with the highest
bidding (or a draw in case of same highest bids by more than
one agent). After this, the agents receiving more than their
proportional share compensate the agents receiving less. The
total of received items bidding value and compensation can be
shown to be proportional fair.

With regard to a wireless infrastructure, the most prominent
problem of fair allocation is wireless channel allocation. In
uplink traffic, and based on available Channel State Infor-
mation (CSI) a base station has to allocate radio channels
to mobile stations. In the abstract problem formulation, one
channel can only be assigned to one mobile station. Now, each
mobile station can utilize a radio channel as a communication
means only to some degree. The most influencing factor here
is just the distance to the base station, but also other physical
characteristics of the transmission, obstacles, mobility etc. (and
should be properly reflected in the CSI). Even worse, as
the channel utilization falls with distance, under equal spatial
distribution of agents, the number of mobile stations increases
with distance (actually, with the square of distance). Thus, the
allocation has to respect this fact and cannot favor agents
(mobile stations) with high channel utilization. If the base
station can provide communication channels with a bandwidth
of 100MB/s, within a second, an agent closer to the base station
might be able to uplink 80MB per second, while more remote
agents can only send 10MB. In such a context, fairness appears
to be related to inefficient total infrastructure utilization, but
has to be maintained nevertheless as the primary goal of
networking is to allow the communication among the agents.

A number of approaches to this problem have already been
provided, for example bidding systems [6] as well as relational
approaches [7], [8] and ad hoc procedures [9]. A common
aspect of these approaches is the primary focus on fulfilling
potential user demands and not so much on the manner by
which the demand fulfillment is the result of combination
of available resources. But then, for example comparing a
transmission step for two agents of 80MB and 20MB per
second does not relate to the channel states for these agents.
It could mean that one agent receives 1 channel utilized with
80MB/s and the other agent 2 channels utilized with 10MB/s,
but it could also mean that agent 1 receives 4 channels a
20MB/s and agent 2 one channel a 20MB/s. In the latter case,
agent 1 would have access to notably more channels than agent
2, and it would be hard to explain the high allocation of agent
1 to agent 2.

On first glance, the Knaster procedure is not suitable for
such a Wireless Channel Allocation (WCA) task, for at least
two reasons.

1) The Knaster procedure selects by highest bid. This
would always be the agent with highest channel
utilization, i.e. agents close to the base station. In
general, distant agents would never be selected.

2) A compensation is practically infeasible - how should
one receive and utilize a compensation bandwidth?

However, in this paper, we want to present an approach
to fair allocation based on this Knaster procedure. For short,
we skip the bidding step and consider a compensation for any
possible allocation. Then, this compensation is considered to

represent unfairness of the allocation: the higher a compen-
sating payment, the higher the excess of some agent against
her proportional share. It means, by a minmax criterium we
can select an allocation minimizing the highest compensating
payment.

In the following section, basic issues about fairness and the
Knaster procedure will be recalled. Section III then introduces
the proposed concept of Knaster fairness, and some experi-
mental validation of this approach and related discussions are
provided in section IV before the paper concludes.

II. FAIR ALLOCATIONS

A. Wireless Channel Allocation

At first we give the formal definition of the Wireless
Channel Allocation problem, following [10]: Given a set of
n users U (the agents of the allocation) and m channels C
(the items of the allocation) and an n × m matrix CC of
channel coefficients, i.e. reals from [0, 1]. A channel allocation
is a mapping A : C → U where to each channel ci with
i = 1, . . . ,m exactly one user uj with j = 1, . . . , n is
allocated. The notation is uj = A(ci). An allocation is feasible
if at least one channel is allocated to each user. The perfor-
mance of user uj in allocation A is pj =

∑
i,A(ci)=uj

CCji.
The task of wireless channel allocation (WCA) is to find a
feasible allocation a that “maximizes” the performances for
all users. The additional task is to assign an effective meaning
to “maximize.” The WCA reflects a situation where a wireless
infrastructure is composed of a Base Station BS and multiple
Subscriber Stations SS, and we consider uplink traffic over
one or multiple timeframes where the BS can simultaneously
receive data from each user via SS. The “channel” here appears
as a virtualization of physical transmission channels, either by
channel bonding allowing for assigning more than one channel
per timeframe to a user, or by repeated use of same channel(s)
at different time slots for same user. The channel coefficients
represents the knowledge of the BS about the particular chan-
nel states, based on measurements (e.g. using beacon signals)
and/or prediction (for example if a user is moving then to
predict future channel states). The WCA then is the scheduling
task that has to be solved based on available channel state
information. Note that standards like IEEE 802.11 (WLan)
or IEEE 802.16 (WiMax) do not specify a scheduling itself
and such procedures can be used to complement the standard
specifications in a real-world application.

However, from economical point of view the WCA appears
to be a specific case of fair allocation of indivisible goods.

B. Fairness Aspects

Among all possible allocations, we may focus on certain
fairness aspects. In general, the following two aspects are
commonly considered:

• Proportionality: among n agents, each agent (user) re-
ceives at least 1/n-th of her total value. If we interpret
the channel coefficients as such values, it would mean
that for all agents Ui we have pi ≥ 1/n ·

∑
j CCij

(note that despite similar names, proportionality is
not the same as proportional fairness, with the latter
considering to maximize the product of utilities).



TABLE I. AVERAGE NUMBER OF PROPORTIONAL/ENVY-FREE FAIR ALLOCATIONS (100 SAMPLES EACH).

users 2 3 4 5 6

2 channels 0.39/0.39 of 4

3 channels 0.9/0.9 of 8 0.74/0.18 of 27

4 channels 1.83/1.83 of 16 2.3/0.39 of 81 1.42/0.09 of 256

5 channels 3.53/3.53 of 32 6.56/1.13 of 243 8.61/0.19 of 1024 3.91/0.05 of 3125

6 channels 7.0/7.0 of 64 18.24/3.83 of 729 26.46/0.33 of 4096 28.44/0.07 of 15625 10.65/0.1 of 46656

• Envy-Freeness: Here each agent A compares her total
value with the value that another agent B would
receive, if the allocation for B would be evaluated ac-
cording to the valuation of agent A. In case B receives
more than A here, it is said that agent A envies agent
B. An envy-free allocation is an allocation where no
agent envies any other agent.

We note that there are several other aspects of fair alloca-
tions that will not be considered in the following, for example
Pareto efficiency (an agent can only receive more if some
other agent receives less), strategy-proofness (an agent cannot
gain by giving wrong information about her preferences) or
equity (the relative gains of all agents according to their
own valuation are all equal). The reason to neglect them
(despite their undoubted importance) is that even the above
two requirements are hard to achieve in a WCA setting.

To see this for proportionality, consider a standard situation
where 4 channels are to be allocated to 3 users. The users have
the same CC for all channels, assume these are 0.8 for user 1,
0.2 for user 2 and 0.1 for user 3. So, users 2 and 3 might be
more distant from the base station than user 1. Now, a feasible
allocation must assign one channel to each user, and the 4th
channel to one of the 3 users, thus receiving 2 channels. Then
for the other two users, the allocation of one channel is less
than their proportional share of at least 4/3 times their CC.
Thus, proportional fairness is not possible. The same can be
seen for envy-freeness.

To illustrate this in more detail, we report on a simple
experiment. We iterate the number of channels from 2 to 6 and
the number of users from 2 to the number of channels (since
we cannot allocate for n > m without leaving at least one
user unserved). Then we average over 100 runs of: (1) setting
all CC i.i.d. random values between 0 and 1, (2) computing
the number of proportional and envy-free allocations among
all possible allocations. Table I shows the results.

It can be clearly seen that the absolute number of pro-
portional and envy-free allocations is rather small, and that
there are always cases where no such allocation exists at all.
The number of envy-free allocations also falls notably with
increasing problem dimension. Thus demanding an allocation
to be just proportional fair or envy-free is not sufficient, and
additional characterizations are needed (note that proportion-
ality follows from envy-freeness).

C. Fair Allocation by Knaster Procedure

The Knaster procedure was proposed more than 70 years
ago [5]. The Introduction already gave a rough overview. Here
we want to clarify the procedure by providing an example from
which the general procedure should become clear.

TABLE II. EXAMPLE FOR THE KNASTER PROCEDURE TO ALLOCATE 4
ITEMS AMONG 3 AGENTS. FOR AGENT 3, THE ALLOCATION IS LESS THAN
PROPORTIONAL, AND AGENT 2 RECEIVES A MUCH HIGHER VALUE THAN
AGENT 1, IF COMPARED WITH THEIR IDENTICAL PROPORTIONAL SHARE.

AGENT 2 COMPENSATES AGENTS 1 AND 3.

Agents
Agent 1 Agent 2 Agent 3

Valuation
Item 1 10 4 5
Item 2 6 8 1
Item 3 2 2 3
Item 4 3 7 3

Total valuation 21 21 12
Initial fair share 7 7 4

Item(s) received Item 1 Items 2, 4 Item 3
Value received 10 15 3

Difference 3 8 -1
Share of surplus 3.33 3.33 3.33
Adjusted fair share 10.33 10.33 7.33
Settlement -0.33 4.66 -4.33

An example for the Knaster procedure is shown in Table II.
Here, 3 agents have to share 4 items, with valuations (“bids”)
as given in the table. An item is assigned to the highest bidder,
and thus each agent receives some value in items. The row
“Total valuation” shows the sum of item values per agent, and
dividing by 3 (the number of agents) gives the least value for
a proportional allocation (shown in the following row).

There is a difference between the value received and the
value that would correspond with a proportional share (shown
in row “Difference”). These per-agent differences are the base
for the calculation of a compensation. At first, the total of all
differences (here 3 + 8 + (−1) = 10) is calculated. The value
is called surplus. It will be equally shared among the agents to
compute an adjusted fair share as shown in the next row. The
adjusted fair share now is compared with the received value.
In case that the received value is larger, the agent has to pay
compensation to the other agents, and in case it is smaller, the
agent will receive compensation. The total of all payments and
payoffs is 0.

In the example in Table II agent 3 does not even receive a
proportional allocation: value of received items is 3, but total
value of all items would be 12 for all items, and 12/3 > 3.
Agent 2 has the same total value like agent 1, but receives
a much higher total value (also owned to the fact that agent
2 receives two items). Even if agent 1 receives a proportional
allocation, there is some advantage for agent 2. At the end, the
settlement is that agent 2 has to compensate to both, agents 1
and 3 for receiving a larger share of items.



III. KNASTER FAIRNESS

As already mentioned in the introduction, the Knaster
procedure cannot be used directly for the WCA problem. If
the channel coefficients were to be interpreted as bids, then
in all cases only agents closer to a base station would win,
and should somehow compensate the other agents. There is
no reasonable way to do this.

But there is a different aspect of this procedure that can
give the base for achieving fair allocations:

1) There is no need to base the settlement on the largest
bids only. The settlement can be calculated for any
allocation of items to agents.

2) The settlement includes payments and payoffs. Large
payments are an indication for unfairness, as it means
that there are agents that have received a much higher
value than other agents.

Independently, the reference point of the Knaster procedure
is proportional fairness. In case of exact proportional fairness,
all payments would be 0. Everything else indicates an imbal-
ance in the allocation with respect to proportionality. We want
to employ this aspect and seek an allocation where the maximal
payment is minimized. This serves both aspects: small payment
indicate an allocation near proportionality, and a balanced
allocation as well. It also solves the problem mentioned in
the foregoing section by selecting a single allocation.

The proposed Knaster fairness, given formally in terms of
the WCA problem (i.e. agents are users and items are channels)
goes as follows: at first, we define the maximal payment of
the settlement for each allocation:

1) Given an allocation A with performance p, computed
according to Section II.A.

2) Take the total of channel coefficients for each user:
ti =

∑m
j=1 CCij . Then, ti/n is the initial fair share

of user ui.
3) Calculate the difference between initial fair share and

user allocation: δi = pi − ti/n.
4) Calculate the surplus S =

∑n
i=1 δi.

5) Adjust the fair share by adding equal shares of the
surplus for each user: fi = ti/n+ S/n.

6) The final settlement then is for each user the differ-
ence between adjusted fair share and performance:
si = pi − fi (positive values indicate payments,
negative values payoffs).

7) The maximal payment s(A) of allocation A is the
largest component of the vector s.

Then we select the allocation that minimizes s(A) as
Knaster fair allocation.

IV. DISCUSSION

We consider the same WCA problem as in the foregoing
section. Three users access 4 channels, user 1 with CC 0.8,
user 2 with CC of 0.2 and user 3 with CC of 0.1. Also in
this case, there is no proportionally fair allocation. Following
the procedure to find the Knaster fair allocation, we yield the
minimal payment for the allocation A = (1, 2, 3, 3) with a
performance vector p = (0.8, 0.2, 0.2) and a settlement vector
of s = (−0.178, 0.022, 0.156). It appears to be close to a

TABLE III. AVERAGE PAYMENTS OF WEAKEST AND STRONGEST USER
(10000 SAMPLES EACH).

problem dimension weakest user strongest user

users: 2 channels: 2 -0.0025 0.0025
users: 2 channels: 3 0.0009 -0.0009
users: 3 channels: 3 -0.011 0.012
users: 2 channels: 4 -0.0012 0.0012
users: 3 channels: 4 0.0065 -0.011
users: 4 channels: 4 -0.011 0.0077
users: 2 channels: 5 -0.0016 0.0016
users: 3 channels: 5 -0.0014 0.0008
users: 4 channels: 5 0.0004 -0.0068
users: 5 channels: 5 -0.0092 0.0038

proportionally fair allocation, but one may wonder why its
actually the weakest user (in the sense of having lowest channel
utilization) that pays the bill. It can be explained by the fact
that the offset to proportionality can better be reduced by
using lower valued items. In the given example, one user will
receive two channels. If it would be a user with large channel
coefficient, the compensation would become larger than for
a user with smaller channel coefficient. This might always
happen when the number of users is a little bit smaller than
the number of available channels.

We study the case in more detail by performing the
following experiment:

1) Average over 10,000 times repeating:
2) Set a random CC with uniform random numbers from

[0, 1] for its components.
3) Find the user with the lowest total of CC (the weakest

user) and the user with the highest total of CC (the
strongest user).

4) Find the Knaster fair allocation.
5) Take the payments/payoffs (positive/negative value)

of the weakest and the strongest user for averaging.

The result of the procedure is shown in Table III.

It can be seen that in general, the payments are rather small,
at most 0.012. As in the example above, in case of m channels
and n = m − 1 users usually the weakest user pays, so the
observation on above example seem to be of general nature. In
case of 2 users, the values must add to 0, but except the case
of 3 channels (which is a case like just discussed) the weakest
user generally receives a payoff.

We can summarize that the Knaster procedure appears
to provide a good balance of the allocation with respect to
proportionality, i.e. it takes the strength of each user’s ability
to utilize the allocated channels into account in a fair manner.
This makes a difference to pure performance- or demand-based
approaches that are commonly studied.

As a final comment, we can see that computational fair-
ness is always reflecting a trade-off between maximality and
equality. Each way of specifying fairness in a formal sense
will either promote the former or the latter. For example, the
popular Jain’s Fairness Index

J(x) =
(
∑

i xi)
2

n ·
∑

i x
2
i

(1)



of a vector x of n elements xi takes its maximal value in
case all xi are equal. However, if we allocate only half of the xi
values only, they are still equal and the fairness indicator is still
1. Even if the xi become very small the value is still 1. Thus,
this index is more or less exclusively focusing on equality and
not on maximality. On the other hand, common approaches
to fairness like maxmin fairness, proportional fairness, alpha-
fairness etc. are all implied by Pareto dominance and thus are
focusing on maximality and less on equality.

Within the context of this discussion we can see that
Knaster fairness belongs more to fairness concepts that are
focusing on equality than on maximality. But by taking pro-
portionality as reference point it appears different from e.g.
Jain’s Fairness Index.

One can envisage a number of further works in this
direction. Just to mention a few aspects:

1) Instead of proportionality, envy-freeness can be taken
as a reference point. Then, in case of user A is
envying user B, user B has to make a compensatory
payment to user A. Minimizing the maximal payment
would alleviate unfairness caused by envy agents.

2) Moreover, a joint settlement for proportionality and
envy-freeness can be introduced as well.

3) Sampling over all possible allocations can rapidly
increase the computational effort. Meta-heuristic ap-
proaches appear to be suitable to approximate the
minmax payment and thus come close to the Knaster
fair allocations.

4) Instead of taking the minimum of maximum pay-
ments, a vector relation between the settlement vec-
tors can be used. Then, minimal allocations are
defined as allocations, whose settlement vector is
not in relation to any other settlement vector. A
suitable relation extending the minimum of maximal
payments would be majorization [11], promoted by
the fact that the sum of settlements is 0. The minmax
allocation would belong to the minimum set, but
other allocations with small maximal payments could
belong to the minimum set as well. This approach
would allow to better reflect the spread of all pay-
ments and payoffs.

V. CONCLUSIONS

The Knaster procedure was initially proposed to solve
the problem of distribution of indivisible goods by a bidding
system, where each item goes to the strongest bidder and
afterwards a settlement is done to compensate for uneven-
ness in the distribution. In this form, it cannot be used for
resource allocation problems like wireless channel allocation
in a wireless infrastructure. However, it can serve as a base for
approximating proportional fairness (proportional fairness here
in the sense that each user receives at least 1/n-th of her total
value, where n is the number of users). We have proposed to
use the Knaster procedure, especially its compensation calcu-
lation, for any allocation of goods to agents, and then select
by a minmax criterion. In this way, the approach will select
an allocation uniquely, with linear search effort (however, the
search spaces do grow exponentially), and which comes close
to proportional allocations. In addition, the approach can be

extended in various ways, for example to solicit envy-free
allocations in place of proportional fair allocations.
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