
Steady-State Image Processing

Mario Köppen1

Fraunhofer IPK Berlin, Dept. Pattern Recognition

Javier Ruiz-del-Solar2

Universidad de Chile, Dept. of Electrical Engineering

Abstract

This paper presents a new approach to the application mode of image processing operators,
the so-called steady-state image processing. The approach reminds a steady-state genetic
processing of images by considering each pixel of the image as an individual. So, some
pixels are selected, processed and copied back into the image. This differs from the standard
approach, where all image pixels are processed at once. The proposed approach offers
many choices for variation, and allows for the assignment of dynamic measures to images.
This will serve new families of soft computing methods as e.g. immune-based algorithms,
which need images as non-static objects in order to fulfill reasonable tasks. This paper
also introduces some basic steady-state operators and exemplifies the analysis of an image
by means of a small example. Also, it is shown how steady-state image processing can
be applied in the context of texture segmentation. Steady-state image processing can be
considered a way of processing images, which is deeply inspired by genetic algorithms.

Key words: soft image processing, linear pixel shuflling, autopoiesis, steady-state genetic
algorithms

1 Introduction

Images as processing objects for soft computing algorithms often faces the limita-
tion of being static objects. In general, an image functionI that maps the domain of
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the image (usually a rectangular subset ofN�N) into a set of so-called pixel values
(usually the setG= f0; : : :;255g for grayvalue images, orG3 for color images), is
all what is needed for a complete specification of an image. Hence, soft computing
algorithms may treat an image as every other kind of functional mapping.

An example for such a processing is given in [1], which presents a genetic pro-
gramming based framework for the generation of texture filters. Another example
is given in [2], where the internal computations of a multilayer perceptron are con-
sidered a convolution operator. Then, the training of the neural network gives an
adapted convolution filter as well. There are many more examples, but a complete
reference would go beyound the scope of this paper.

To regard for the upcoming of new algorithm families within the field of soft com-
puting, as immune based algorithms [3] [4] [5] [6] or autopoietic processing [7]
[8], it has to be noted that such approaches refer to non-static objects by their very
nature. As an example, the animal immune system is basically monitoring pro-
cesses and not objects. Also, a genetic algorithm emulates the fate of a population
of individuals, each of which is struggling against habitual conditions by means of
increasing its fitness.

This paper gives a proposal for a manner of processing images, which may obtain
an underlying dynamic nature of the image function. This approach will be referred
to as steady-state image processing, thus ressembling the basic mode of population
treatment used for steady-state genetic algorithms: instead of replacing all individ-
uals of a population at once by the best children of the next generation, only a part
of the population is processed and replaced. A similar modification will be made in
the mode of applying image neighborhood operators.

Since the early days of pattern recognition, image neighborhood operators (short:
image operators) played an important role in the conception and design of image
processing algorithms [9]. For each pixel of a grayvalue or color image, an image
operator specifies two things: it assigns a neighborhood to each pixel (in most cases
the four or eight nearest neighbors in the image grid), and it provides a computation
with the gray- or color values of all pixels within the neighborhood of the pixel
as input and a new gray- or color value as output. Applying an image operator
equals an image-to-image operation. The image operator is applied to each pixel
of the image ”at once”, i.e. the new value at position(x;y) of the result image is
computed from the neighbors of pixel(x;y) in the input image. Examples for image
operators are the Sobel operator, the Laplace operator, convolution operations or
the grayscale dilation and erosion operation, but there are more. As a common
rule, image operators are so applied that the result at some pixel positionp1 is not
influenced by the result for any other pixel positionp2.

Steady-state image processing, the formal definition of which will be given in sec-
tion 2, modifies this approach by processing only a subset of the image at once, thus
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allowing for a possible influence of the processing at pixel positionp1 on the re-
sult at pixel positionp2 later on. Instead of a single image-to-image operation, now
one gets a processing sequenceIn of images (best represented as a movie file). The
basic advantage is that the concept of animage dynamiccan be introduced. This is
done by tracking the evolution of a feature, which is computed from theIn. So, dy-
namical measures can be computed, and dynamic states (equilibrum, breakdown,
even chaos) assigned. Frankly spoken: how well the image resists the “attacks” of
the repeated application of an steady-state image operator may serve as qualifying
feature for this image itself. Moreover, it may reflect the organization of an image,
and not just its structure, since it modifies the relations between image parts.

S(In)

N(In)

In In+1

R(In)

O(In)

Fig. 1. General procedure of the steady-state image processing.

However, the study of steady-state image operators is just at it beginnings, and
the underlying mathematics may become quite complicated. So far, we are going
to present some examples for steady-state image operators and demonstrate, how
they treat certain image classes, and provide some choices for dynamic measures
derived from images this way.

Note that the presented approach can be related to cellular automata, and insights
from this field can be used to get a better understanding of the steady-state process-
ing. The important difference is that the sequence of states is a sequence of images
as well, hence the state changing operators may be defined in terms of image fea-
tures.

Also, steady-state image operators generalize the well-known relaxation operators.
During relaxation, a pixel of an image is modified. Then, according to an energy
measure of the whole image it is decided whether the modified pixel is preserved
(if it improves the energy value) or the modification rejected.

In the following, in section 2 steady-state operators are formally defined, then, in
section 3, some example operators are introduced and discussed. Section 4 gives a
short example of the analysis of an image, using the concept of dynamic measures.
Then, section 5 gives a short insight into a real-world application consisting in the
segmentation of textures using the image-processing paradigm here proposed. Fi-
nally, section 6 suggest some alternative ways for specifying the operators involved

3



in the steady-state processing and gives an outlook of this work.

2 Definition

Be In a sequence of images, considered as a series ofstatesof one imageI0, which
is equal to the input image. GivenIn, the imageIn+1 is derived by the specifi-
cation of the steady-state image operator by means of a tupel of four operators
(S(In);N(In);O(In);R(In)). At first, imageIn+1 is made from a copy of imageIn.
The operatorS(In) is the specification for selecting a setU of pixels withinIn, and
it may depend on the current state of the image. Then,N(In) assigns a neighbor-
hood to each pixel inU , and the computation given byO(In) is applied to all gray-
or color values of those neighborhoods independently. This gives a set ofjU j new
gray- or color values. SpecificationR(In) indicates, where to put these new gray-
or colorvalues in the imageIn+1. All other pixels inIn andIn+1 are equal. For an
illustration of the general procedure, see figure 1.

3 First Collection of Steady-State Image Operators

With the following definitions, basic approaches to the steady-state image process-
ing are supplied. In the following, none of the operatorsS;N;O or R really depends
on the imageIn, i.e. they are selected independently from the image. The operator
Ssimply selects one pixel location in the image, with uniform distribution of thex-
andy-coordinates (this gives a non-uniform distribution of the(x;y) locations). The
operatorN selects a random neighborp2 of the selected pixelp1 = S(In) within the
4-neighborhood ofp1. The only varying operation isO, and the formal definitions
of r = O(p1; p2) are given within the following subsections. Then, theR-operation
is to put the valuer onto the position ofp1 in order to obtain imageIn+1 from In.

(f)

(a) (b) (c)

(d) (e) (g)

Fig. 2. Steady-state processing the Lena image: (a) original (b) xor (c) xor3 (d) average (e)
scaled gradient (f) scaled maximum (g) transduction.
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For demonstration purposes, three test images have been used. Image 1 is the well-
known Lena image, which is an example of a scene image. Image 2 is a patchwork
of two parts of an EC bankcheck with parts of handwriting on it. This is an example
for a texture image. Image 3 is the Kirlian photography of a fingertip, providing an
example for a nearly binary image.

In figures 2, 3 and 5, the effects of the proposed operators after a greater num-
ber of iterations can be seen. Also, there is the SSIP website, where one can find
Quicktime movies of the steady-state mode of image operation. The URL is

http://vision.fhg.de/ipk/demos/ssip

With the exception of the Kirlian image, to which the application of the Xor and
Xor3 operator was not reasonable, all operators were applied to all three images.

As a common rule, all proposed steady-state image operators have a more destruc-
tive influence on the image content. After a sufficient large number of iterations,
the former image content will be more or less destroyed. Image analysis has to be
based on the “behavior” of the image in the beginning of the processing. As a com-
mon rule, for an image of about 100�100 pixels, this will be up to about 500000
iterations, and this value increases with image sizen by orderO(n2).

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Steady-state processing the EC-check image: (a) original (b) xor (c) xor3 (d) average
(e) scaled gradient (f) scaled maximum (g) transduction.

3.1 Xor Operation

The steady-state Xor operator was already introduced in [7], and it was proven to
be the only auto-projective operator. The steady-state Xor operator is defined with
the following formula

r = In(p1)� In(p2); (1)

where� stands for the bitwise Xoring of the two grayvalues.

In [7], the importance of this operator for obtaining a computational model for
autopoietic processing of images was already pointed out. The argument was based
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on the consideration of reproductive properties of a possible steady-state operation
mode for applying image operators. The Xor operator has the following property

(a�b)�b= a (2)

which allows for possible stable structures in images. The results given in figures 2
(b), 3 (b) and on the SSIP website demonstrate a more “salt-and-pepper” processing
of images, but this impression is not correct. While there is a positive probability
of reproducing pixel grayvalues, the location where this reproduction occurs might
shift slightly.

(a)

(b)

(c)

Fig. 4. Application of dilation (c) to the steady-state xor processed image (b) nearly recov-
ers the starting image (a).

This fact is illustrated in fig. 4. The effect of steady-state processing of the face
image (a) for 50000 iterations is shown in subimage (b). After applying a dilation
to the result image (b), which gives subimage (c), the image (a) seems to be nearly
recovered. The only difference are the borders around the phong-like structures in
the face image (a).
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3.2 The Xor3 Operator

While the only operations with an orbit of size 2 (as the Xor operation with the
propertya� a = e, with e being the identity operation) for any set of possible
grayvalues is the bitwise Xor operation, there can be designed similar operations
with other prime numbers as orbit sizes. From a basic theorem of group theory (for
a proof consider [7]), then the order of the corresponding group established from
the set of grayvalues as elements and the operation� as group operation, the order
of the group must be a power of the size of the orbit of an element, as long as
this size is prime. Hence, all groups with “reproductive” properties, i.e. with the
propertya�a: : :�a= e can be reduced to a bitwise operation mode of the basic
operation for a group with exactlyp elements (withp being the prime number of
the size of the orbit of an element). For the casep= 3 this gives a unique operation
on a group of three elementsG= f0;1;2gwith the propertya�a�a= e for each
a2G.

It can be easily shown that such a group has the operation table for�3 as given in
table 1.

Table 1
The operation table for a group operation�3, for which each element has an orbit of size
3.

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

From this, a new steady-state operator Xor3 can be easily designed. Since the order
of the group has to be a power of 3, the 256 grayvalues of a standard grayvalue
representation of an image were rescaled to the grayvalue range 0: : :242= 35�1.
Then, the grayvalues at positionsp1 and p2 are represented to the number base 3
and the operation�3, as given in table 1, is applied digitwise:

r = In(p1)�3 In(p2): (3)

Examples for the effect of this operation, which are similar to the Xor operation,
are given in figures 2 (c), 3 (c) and on the SSIP website.
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3.3 Average Operator

The average operator uses theO-operator

r =
In(p1)+ In(p2)

2
(4)

i.e. the new value replacing the grayvalue at the randomly selected positionp1 is
the average of the grayvalues at positionp1 andp2.

The average operator has an equivalent standard image operation, which computes
the average grayvalue of each image pixel and its neighborhood at once. Thus, the
effect of the steady-state average operator is not very different from the repetitive
application of a standard average operator on images.

The effect of the steady-state average operator on our demonstration suite can be
seen in figures 2 (d), 3 (d), 5 (b) and the corresponding movie files on the SSIP
website.

(a)

(b)

(d)

(c)

(e)

Fig. 5. Steady-state processing the Kirlian image: (a) original (b) average (c) scaled gradient
(d) scaled maximum (e) transduction.

3.4 Transduction Operator

The steady-state transduction operator appears to be the most simple one: a ran-
domly selected pixel is replaced by one of its neighbors. More formally

r = In(p2): (5)

This operation has the image shift as standard (i.e. non-steady-state) image pro-
cessing counterpart, but is a completely different modification of the image. From
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the examples in figures 2 (g), 3 (g), 5 (e) and the SSIP website it can be seen that
the kind of processing ressembles a more fractal “melting” of the image content.

σ=10

σ=128 σ=256

σ=40σ=30σ=20

σ=50 σ=80

Fig. 6. Effect of conditional transduction after 100,000 iterations for various values ofσ.

An interesting variation of this operation is the conditional transduction (more a
relaxation operation) with theO-operator

r =

8<
:

In(p1) for jIn(p1)� In(p2)j � σ

In(p2) for jIn(p1)� In(p2)j< σ;
(6)

i.e. the value atp2 is only copied over the value atp1 if the difference in grayvalues
is lower than a thresholdσ. Figure 6 shows the effect of this operation after per-
forming 100,000 steps for various values ofσ. For smallerσ-values, the operation
tends to be a segmentation of the image, since the processing will not cross over
image boundaries with a higher gradient.

3.5 Scaled Maximum Operator

The scaled maximum operator in steady-state operation mode is given with the
equation

r = αmax[In(p1); In(p2)]: (7)

The important aspect here is the use of a parameterα with values from the range
[0;1]. While for α = 1 the result would be just a rapid distribution of the brighter
pixels in the image over the whole image area, for smaller values ofα (0:9< α <

1:0) this process may become elongated. For even more smaller values ofα, the
image will become dark at the end. An example analysis of the scaled maximum
operator, based on several values ofα, will be presented in section 4.

9



The effect of steady-state scaled maximum processing of images can be seen in the
figures 2 (f), 3 (f), 5 (d) and the movie files on the SSIP website.

Using ranking, minimum, ordered weighted averaging or T- and S-norms instead
of the maximum will provide further steady-state operators as well.

3.6 Scaled Gradient Operator

This operator specifies theO-operator by the formula

r = αkIn(p1)� In(p2)k: (8)

with α being a positive parameter (reasonable values can be taken from the interval
(1:0;1:2)).

The steady-state scaled gradient operator rapidly destroys the image structure, as
can be seen from the examples in the figures 2 (e), 3 (e), 5 (c) and the SSIP website.
However, the images will not converge to a stable final structure, but rather to a kind
of salt-and-pepper noise image. This can be understood from considering the limit-
ing cases: when the two neighboring pixels selected both are bright, the value ofr
will be low andp1 will be replaced by a dark pixel, thus putting a bright and a dark
pixel in direct adjacency. When this pair is selected again, the gradient is high, and
the former dark pixelp1 now is replaced by a bright pixel, re-establishing the initial
situation. Thus, there is no stable configuration for the scaled gradient operator, and
the image structures are “destroyed” starting off from its more homogenuous parts
(where gradient values are small).

3.7 General Characterization

The given example operators can be unified in a general approach, which is based
on a lookup matrixL. Thereby,L is a grayvalue image of dimensiongmax�gmax,
with gmax being the maximum grayvalue of the imagesIn. Then, theO-operator is
given by:

r = L(In(p1); In(p2)): (9)

Figure 7 gives the corresponding lookup matrizes for the steady-state operations
presented in the foregoing subsections.

As it can be easily seen, this gives a simple representation of steady-state operators,
for which theO-operator does not depend on the stepn.
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(a)

(d) (e) (f)

(c)(b)

Fig. 7. Lookup matrizes for the presented steady-state operators: (a) xor (b) xor3 (c) average
(d) scaled maximum (α = 0:8) (e) scaled gradient (α = 1:0) (f) transduction. Note the
smaller size for the lookup matrix of the xor3 operator.

original image

lookup matrix

30,000 iterations

100,000 iterations

1,000,000 iterations

Fig. 8. Steady-state operator defined by an arbitrary lookup matrix.

Figure 8 gives an example for a steady-state operator defined by an arbitrary lookup
matrix. An interersting aspect here is the obvious stability of the processed image
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after about 100,000 steps.

4 Example Image Analysis

As already mentioned, one important aspect of the steady-state approach to image
processing is the possible assignment of dynamical measures to images. The most
prominent example for such a measure is the image volume, i.e. the sum of the
grayvalues running over all possible pixel positions.
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Fig. 9. Plot of image volumes for the steady-state scaled maximum operation for the first
100000 iterations.

The image volume will be acquired for say all 1000 iterations. In figure 9 three
plots of the image volume measure are given for the steady-state scaled maximum
operation (see section 3.5) applied to the Lena test image. The plots show the image
volume against the number of iterations in units of 1000 steps. Three different val-
ues forα were used. For convenience, the processed image after 100000 iterations
is supplied as well. As can be seen from the plot, forα = 0:95 the image volume
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remains nearly constant for a larger number of iterations, while it rapidly becomes
small for α = 0:8 and becomes high forα = 1:0. Thus, 0.95 can be considered a
characteristic value (or feature) of the Lena image (in given resolution).

It is obvious that such kind of analysis will work for every image. For smallα, the
image will become completely dark after a sufficient large number of iterations,
and forα near 1, it will contain only white pixels. Hence, there must be a range for
values ofα, where at least a temporary stability may occur. Such “behaviour” of an
image can be used for characterizing the image as well.

This may serve to illustrate the basic idea of an image analysis based on steady-state
image processing.

5 Real-World Application: Texture segmentation using SSIP-operators

As a first real-world application of the here-described image-processing paradigm,
we are going to present the segmentation of natural textures using SSIP-operators.
The operator selected to perform this task was the scaled minimum, defined as:

r = αmin[In(p1); In(p2)] (10)

This operator is applied to the textured image being segmented, an after an in-
teraction time the segmented image emerged. The result of the application of this
operator to two natural textures from the Brodatz Album [10] is shown in figure
10. The both selected textures are very difficult to segment with standard methods
(co-occurrence matrix, Gabor-based, wavelets, etc.). As it can be seen in figures
10(c)-10(d) the segmented results are satisfactory and even suitable to be improved
using nonlinear post-processing. At this time we are working in this direction.

6 Further Suggestions and Outlook

There are many choices for the operators included in the specification of a steady-
state operator, and many ways to make them dependent on the actual image.

For S(In), the choice is strongly related to the decision for a random distribution
of the selected pixels. For obtaining a uniform distribution of the pixels (not the
coordinates!), a procedure like the Linear Pixel Shuffling (LPS) [11] can be used.
However, the LPS has been proven to increase processing speed for image process-
ing operations, since a processing result similar to the image processed in a standard
way (all pixels at once) may obtained with a remarkable smaller number of steps.
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(a) (b)

(c) (d)

Fig. 10. Segmentation of two Brodatz natural textures (a-b). The segmented textures after
10000 iterations are shown in (c-d). Theα parameters being utilized are 1:15 and 1:05,
respectively for images (c) and (d).

So it is not expected to obtain a qualitatively different image in the steady-state case
when LPS is used asS-operator.

Other possible specifications of a steady-state image operator include, but are not
restricted to: givingS(In) by Markov random fields or by selecting pixels according
to a random distribution (which might depend onIn); giving N(In) andO(In) by
one of the many known image neighborhood operators; givingR(In) by selecting
the same points asS(In), or using distinct Markov random fields.

It should be mentioned that markov random fields are widely used in the field of
texture synthesis. Taken this fact into account, we believe that steady-state image
processing has many applications on the synthesis of textures. At the moment we
are working in this subject.

Those variations and the issues related to their mathematical modelling and their
versatility are the subject of further research.

The basic concept, to provide a manner of image processing inspired by genetic
algorithms (and thus inspired by biology) offers a great choice of new ways for
applying soft computing technologies in the field of image processing.
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