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Abstract- This paper presents an approach to blind tex-
ture detection in images based on adaptation of the 2D-
Lookup algorithm by Genetic Programming. The task of
blind texture detection is to separate textured regions of
an image from non-textured (as e.g. homogeneous) ones,
without any reference to a priori knowledge about image
content. The 2D-Lookup algorithm, which generalizes
the well-known co-occurrence matrix approach of texture
analysis, is based on two arbitrary image processing oper-
ations. By Genetic Programming, those image operations
can be designed and adapted to a given recognition goal
of the whole algorithm. The idea to employ such a frame-
work for texture detection is to use a random image as
adaptation goal. Despite of the fact that such a task has
no exact solution, the system is able to fulfill this task to
a certain degree. This degree is related to textureness in
the image: the more texture, the higher the degree. The
paper exemplifies this approach.

1 Introduction

Textures are homogeneous visual patterns that we perceive
in natural and synthetic scenes. They are made of local mi-
cropatterns, repeated somehow, producing the sensation of
uniformity. Texture perception plays an important role in
human vision. It is used to detect and distinguish objects,
to infer surface orientation and perspective, and to determine
shape in 3D-scenes.

The restriction of approaches to image understanding on
texture processing has recently been paid some attention [1]
[2] [3]. The reason is quite simple. On the one hand, there
are many image understanding applications on the wishlist of
pattern recognition researchers, for which semantic proposi-
tions of a given image are a necessary prerequisite, on the
other hand there is the current state-of-the-art being far away
from meeting even the basic requirements for developping
such applications. At least, this can be exemplified by the
complete absence of any such applications, as e.g. content-
based image search engines, on the internet1. Thus, it seems
to be more favourable to restrict the application field on ap-
plications more resembling the current state-of-the-art.

The basic task of texture detection is to obtain a spa-

1We consider the feature-vector based approaches given by e.g. IBM’s
QBIC or AltaVista Image Search not a contribution tocontent-basedimage
retrieval.

Figure 1: Example for texture image containg fault.

Figure 2: Goal image for the texture fault in fig. 1, as given
by the user.

tial separation of parts of an image that contain textured re-
gions. Basically, this should be a kind ofblind image pro-
cessing, means without using anya priori knowledge about
the prospective image contents. So far, a great deal of work
was devoted to the accompanyingnon-blind task: describing
textures in images based on semantic texture models, or seg-
mentation of images assuming the image to be wholly cov-
ered by several texture classes [4] [5] [6] [7]. All of those
approaches assume the processed image to be fully-textured.

However, in many contexts, there is a clear advantage
of being able to segment an image into textured and non-
textured regions. Just to name a few: restricting image ma-
nipulations to textured regions, or excluding them from the
processing; constructing animations from still images; object
separation against a background; obtaining primary semantic
descriptions of images asf. This directly leads to the ques-
tion about a joint property of textured regions, which may be
employed to design such a detection procedure.

Since the early days of texture analysis, second-order
statistics derived from the co-occurrence matrix of a texture
image has been proven to be the most succesfull approach to
many kinds of texture processing (especially the detection of
texture faults, and the texture segmentation) [8] [6]. Hereby,
the co-occurrence matrix is the histogram of the number of
occurrences of grayvalue pairs at neighbouring pixel posi-
tions. For allocating positions in an image, which are re-
sponsible for particular feature values of the co-occurrence



matrix, a lookup-procedure may be considered, which marks
all values in the image leading to a corresponding entry in the
co-occurrence matrix.
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Figure 3: Adapted 2D-Lookup framework applied to
bankchecks texture background removal (from [9]).

In this paper, an approach to texture detection is presented,
which is based on a generalization of the co-occurence ma-
trix, the so-called 2D-Lookup, and which uses Genetic Pro-
gramming in order to make the heuristic assignment of 2D-
Lookup matrix features to image regions.

The initial reason to develop such a Genetic Programming
based adaptation of the 2D-Lookup algorithm was the design
of texture filters from user-provided examples. The gener-
ated filters are complex image operators, which, in combi-
nation with the 2D-Lookup algorithm, gives a foreground-
background separation of the image, with a special texture
marked as image foreground (e.g. black pixels against a white
background). This is assumed to work foranykind of texture.
The same framework comes out to be able to detect textured
regions by changing the user-provided goal, no matter what
the particular texture is. Basically, this is achieved by giving
the separation ofarbitrary image regions as adaptation goal
to the Genetic Programming. Of course, there is no texture
filter possible to solve such a task. But, and this is the basic
idea behind the approach presented here, it is able to solve
this task to a certain degree: the better the 2D-Lookup adap-
tation works, the more texture is in the image region. This
will be given in more detail in the following text.

Section 2 of the paper recalls the 2D-Lookup based frame-
work for texture filter generation. The following section than
reveals the basic idea of using random images in the same
framework for separating textured regions from non-textured

ones. Then, in section 4, examples for the approach using im-
ages of photographs are given and discussed. The paper ends
with a summary and the naming of superposing procedures,
which employ the given approach.

2 Texture Filter Generation by Genetic Pro-
gramming

Recently, a framework for the automated generation of tex-
ture filters using evolutionary computation, was presented
[10]. The framework employs the so-called 2D–Lookup al-
gorithm, which goes as follows.

Given a texture image containing a foreground structure
(e.g. a texture fault, handwriting). This input image is as-
sumed to be a grayscale one, with each grayvalue from the
setf0; 1; : : :; 255g (consider figure 1). The task is to design
a filter, which separates the foreground structure from its tex-
tured background. The task is specified by a second binary
image, the so-called goal image, which is manually crafted
(e.g. by a photo retouching program like Photoshop, consider
figure 2 as an example for such a goal image for the image
in figure 1). In the goal image, the shape of the foreground
structure is painted black, the texture–for–removal region is
painted white. This is all, what is given. There is no spe-
cial texture model known to the user and there are no further
requirements for the goal image.

For specifying the 2D-Lookup algorithm, two image pro-
cessing operationsop1 andop2 are to be named. IfI(x; y) is
the image funktion of the input image, for which the filter has
to be designed, the two operations, if applied toI, gives two
result imagesop1(x; y) andop2(x; y), both of the same size
asI.

Now, as a second specification of the algorithm, a set of
(crisp) rules is given. Each rule is parametrized by the image
coordinatesx andy and gives an entry in the result image of
the algorithm according to the grayvalue outcome of the two
operations. Such a rule has the general form

if op1(x; y) is g1 and op2(x; y) is g2

then res(x; y) is lt(g1; g2) 2 f0; 1g

There is a maximum of256� 256 rules necessary to specify
the algorithm. It is convenient to display all rules by means of
an image of size256� 256, the so-called 2D-Lookup matrix,
with lt(g1; g2) as image function.

Figure 3 gives an example for this procedure, including
input image, goal image, result ofop1, result ofop2, 2D-
Lookup matrix and result of the algorithm.

The purpose of the framework presented in [10] was to
configure the 2D-Lookup algorithm properly just by means of
input image and goal image, in order to supply the most sim-
ple user interface for texture filter generation. This goal was
achieved by using evolutionary algorithms, especially Ge-
netic Programming [10], and a variant of the Nessy algorithm
capable of multi–objective optimization [11]. Each individ-
ual of the population of the evolutionary algorithm represents



one configuration of the 2D-Lookup algorithm. Therefore, an
approach has to be given for the following issues:

� Coding: The individual must specifyop1, op2 and the
2D-Lookup matrixlt in order to fully specify the 2D-
Lookup algorithm.

� Fitness: A measure has to be given for comparing the
result of the 2D-Lookup algorithm, as configured by an
individual, with the goal image.

By using Genetic Programming (GP), best results were
achieved. In GP, each individual is represented by an expres-
sion tree, with image operations as node functions. For details
of the GP approach see [10]. The result of a GP run is a fully
specified filter program, which performs the two operations
on an arbitrary input image, and the 2D-Lookup matrix. Fig-
ure 4 shows an example for the tree structure of an individual
of the Genetic Programming population, and fig. 5 the same
tree with the processing images replaced.
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PS4 PS5

g1=PS1(o) g2=PS2(o) g3=PS3(o)

g4=|g1-g2| g5=PS5(g3)

o o o

(op1,op2)

op1 op2

λ

Figure 4: Example for the representation of a complex image
processing operation by an individual tree structure.

In [12], an approach for improving the performance of the
framework by using neural networks, esp. the Unit RBF neu-
ral network [13], was presented.

Meanwhile, this framework was used in several applica-
tions, including texture inspection and bankcheck processing
[9].

It has to be noted that the approach will not work on the
borders of the images. In all cases, there is a border of 5 to 7
pixels width, for which the complex operators will not behave
correctly.

Also it should be noted that several runs of the Genetic
Programming will give several results. It is not expected to

λ

g1 g2 g3

g4 g5

original image

Figure 5: Same tree as for figure 4, with the processing im-
ages replaced.

have a means for finding globally optimal solutions of the
filtering problem. Moreover, slightly imperfect results gain
better generalization performance, as it was demonstrated in
[12].

To summarize: the 2D-Lookup adaptation framework cre-
ates complex image processing operators by Genetic Pro-
gramming. The objective of the adaptation is given by means
of a goal image. Given a textural scene with a foreground
structure of interest, the user can, without referring to any
model, draw a goal image, where she marks all positions of
the foreground structure in black and all other white.

Figure 6: The user interface of the 2D-Lookup adaptation
framework: only the texture image and a hand-crafted binary
image, which indicates the region of interest, has to be pro-
vided by the user.

Figure 6 shows possible pairings of texture image and goal
image. Those images constitute the user interface to the adap-
tation framework.



(a) (b)

Figure 7: Random dot patterns generated from equally dis-
tributed coordinates (a) and from equally distributed coordi-
nates with a minimum distance constraint for nearby dots (b).
Only (b) appears to be random in the sense of undistinguished
positions, while (a) gives visual cues for the human percep-
tion.

3 Texture Detection by 2D-Lookup Adaptation

Basing the approach is the following observation: in figure 7,
there are two displays of 20,000 randomly selected pixels in
a256�256 image. The difference between partial figures (a)
and (b) is that for the case (b) it was not allowed to have direct
neighbours selected. Hence, partial figure (a) is a random dot
pattern in the statistical sense, while random pattern (b) seems
to be a better representation of “randomness”, since there are
no regions differentiated from other regions in the image. The
observation is that fig. 7 (a) appears to be more structured for
the human eye than fig. 7 (b), despite of the fact that only
fig. 7 (a) is truely a random pattern.

This fact is underlying the visual and subjective perception
of texture. Hence, it also provides a means for detecting tex-
tures as well. As the human eyes perceives micropatterns in
the dot distribution, the 2D-Lookup procedure can be forced
to detect such micropatterns as well.

The approach is demonstrated by a small experiment. For
a grayvalue random pattern, a goal image is given, for which
an arbitrary region is assigned to black. Despite of the fact
that there is no such distinction possible in the random pat-
tern image, the 2D-Lookup adaptation framework is config-
ured in order to achieve such a segmentation. Of course, the
more micropatterns there are, the better the chance to achieve
a result matching the goal image to a higher degree. In fig. 8,
the same experiment is performed for a more homogeneous
image, and the lower matching degree after adaptation can be
clearly seen. Also, fig. 8 gives the result for a gradient image:
the system is only able to select some border-like structures.

From this, the general procedure for texture detection can
be derived.

Given an imageI with unknown content. FromI, a gray-
value imageIg is derived. Then, random binary images are
created, as e.g. two opposing chessboard images as given in
fig. 9 (the regularity of the patterns in those images is not im-
portant for the approach, but technically convenient). Now,

Figure 8: Adapting the 2D-Lookup algorithm by providing
an arbitrary goal image and a random pattern image (upper
row), a homogeneous image (middle row) and a gradient im-
age (lower row).

sw ws

Figure 9: The two goal images with opposing chessboard pat-
terns SW and WS, which were used for the texture detection.

the 2D-Lookup adaptation framework is run twice with those
random images as goal images, and the two result images are
fused. There is no need to consider the intermediate operation
images or the 2D-Lookup matrix, all adapted by the Genetic
Programming procedure, at all.

In the result, the cells of the chessboard image with an
underlying texture in the corresponding region of imageIg
will become more filled with black pixels than for the boxes
with underlying non-textured region. By using the opposing
chessboard patterns, just after two runs only each of the image
pixels was part of one black position in the goal image.

Of course, other binary patterns for the goal images could
be used as well. The only point is that there must not be a cor-
relation between the spatial organisation of the image struc-
tures and the random pattern. Giving the chessboard patterns
and photographic images, it is highly unlikely to get a corre-
lation.

4 Results and Discussion

In fig. 10, a test image of New Caledonia was considered. The
result of fusing four processing runs of the 2D-Lookup adap-
tation framework for each chessboard pattern as goal image
is given, clearly distinguishing the central textured part in the
image by allocating more black position to those region.



Figure 10: Texture detection on the test image: the figure
shows the test image and the two goal images (upper row),
the results of four runs of the 2D-Lookup adaptation foreach
goal image (second row), the fusion of those images into two
images (third row), the minimum of both images (fourth row)
and a postprocessed result, assigning darker grayvalues to re-
gions with higher pixel density (last row).

Figure 11 shows the intermediate processing results for
the same case. The 2D-Lookup matrix is surprisingly differ-
ent from a random pattern, thus resembling underlying non-
randomness in the grayvalue distribution of the correspond-
ing image parts. For comparison, fig. 12 shows the corre-
sponding variancy image, for which the value of the variancy
of the grayvalues in an5 � 5 neighborhood ofeach pixel is
represented as a grayvalue. As it can be seen, this result re-
lies on the original image structures and does not account for
e.g. long distanced similarities among pixel patterns (what the
given 2D-Lookup adaptation approach is able to do).

5 Outlook

In this paper, an approach to blind texture detection was pre-
sented, which is based on the ability of a Genetic Program-
ming procedure to solve a certain task. A framework for
2D-Lookup algorithm adaptation was employed. Normally,
the framework is instructed by the provision of a texture im-

input image goal image

operation image 1 operation image 2

2D-Lookup matrix

result image

Figure 11: The intermediate result images for one run of the
2D-Lookup adaptation in fig. 10.

Figure 12: Variancy image of the test image.

age and a hand-drawn goal image. In this goal image, all
pixels belonging to a region-of-interest of the texture image
(e.g. texture fault region) are marked in black. Now, the 2D-
Lookup adaptation designs a texture filter, which comes as
close as possible to the given goal image.

For texture detection, a set of random images as goal im-
ages is used instead. This means that the 2D-Lookup al-
gorithm is required to solve a basically contradictious goal.
However, if there is the occurrence of a similarily textured
region at two separated regions of the goal image, both in
black, the task may be solved to a certain degree. So, the sys-
tem will better reproduce the black patterns in the goal image
at textured positions.

The approach was considered on a test image and gave a
reliable result. The following could be noted:

� The higher the density of reconstructed pixels in the
fused result image, the more textureness is in the cor-
responding image parts.



� For gradients e.g. object borders, the approach will also
tend to indicate the object borders.

� It is reasonable to split the processing image into
smaller subimages for getting better performance.

The result of such a processing may be used e.g. in the context
of digital watermarking, for slight image modification will be
less visible in textured regions. Also, from the detected tex-
tured regions, goal images for the “regular” use of the 2D-
Lookup adaptation can be automatically designed. Then, all
different textures in an image can be segmented. This gives
primary information about the image content. Hence, we con-
sider the presented procedure, despite of its complexity, as an
important first step for the derivation of image descriptions
by image processing operations.
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