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Abstract- A framework for the automated visual inspec-
tion of collagen plates was implemented and used in an
industrial application for the evaluation of fault percep-
tual relevance. The here presented paper analyzes the
methodologies used in this framework in order to pre-
dict the end user’s opinion, especially the usage of ge-
netic algorithm to adapt the fuzzy weights for making
the final classifications.
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1 Introduction

The control of the industrial mass production of raw col-
lagen plates by freeze-dry technology from bovine skins
has improved strongly within the last years. However, the
production line still needs a lot of personal experience and
proper system settings in order to produce collagen plates of
a quality satisfying customer demands. While the number of
technical and functional faults (like ruptures, inclusions) de-
creased steadily, a new quality of customer demands came
more and more into focus. This new quality demand is re-
lated to the inhomogenuous appearance of a collagen plate.
The analysis of this quality is specially complex due to the
fact that the collagen plates originate from an organic raw
material and that they are finally going to be used as end
products in the cosmetics and pharmaceutical industry (e.g.
tailored to face masks or used as human skin replacement).
So, in that scope also the subjectively determined aesthet-
ical quality matters, and a quality inspection procedure is
needed regarding this fact. For the production companies,
this means to hire staff for manual visual inspection of the
plates after production and before packaging, and to attempt
a rough specification of perceptible plate features that may
lead a customer to the final decision that a certain collagen
plate looks somehow ugly”. Once having such features,
they can be used to train the human inspectors.

Fig. 1 gives some examples for such perceptual faults.
Under normal lightning conditions, collagen plate look sim-
ilar to paper, so the contrast of the images in the figure was
strongly enhanced by histogram equalization procedure to
make the features more clearly visible. While subfigure (a)
shows a plate that will be accepted by the customer, the
other show features, the presence of which often leads to
a customer return, as there are:

e non-persistent holes in the material (b), often only
visible on one side of the plate. The size, count and

positions of all such holes goes into the perceptual
decision of whole plate appearance: while one big-
ger hole at the border may not count much, multiple
small holes in the center gives a strong reject. This
is also related to the further processing of the plates,
e.g. to the placement of cutting face mask template on
it that circumvent hole positions. Persistent holes are
usually considered a technical fault.

e thawing structures (c), resulting from small fluctua-
tions of freeze-drying control variables, yield a large-
scale structure on the plate that normally gives a cus-
tomer rejection. The contrast enhancement acts more
strongly here, since it affects larger parts of the whole
image.

e Eddies (d) are always present on the plate, but they
are of lower contrast to the background and of fuzzy
regional appearance if compared to holes. Also, count,
size, position, but also distinctness and contrast of all
eddies influence the whole imprecision of the plates
complexion.

(d)

Figure 1: Contrast enhanced images of collagen plate with
some typical perceptual faults; (a) no faults; (b) hole in up-
per left corner; (c) thawing structures; (d) high number of
eddies distributed over the whole area.

There are further classes of such features, referred to
as perceptual faults in the following. However, their gen-
eral impact on the final appearance decision is doubtfully,



and the subjective base of the decision makes it even more
harder to establish an objectively working framework, with
resulting customer returns of collagen plates being as mini-
mal as possible.

This works presents a prototype system for the visual in-
spection of collagen plates. This system is in a test phase
at a collagen producer’s site. Despite of the many facetts
of such a system (lighting installation, safe transport of the
plates, task synchronization), the emphasis here is on the
evaluation of perceptual faults that are featurized by appro-
priate image analysis algorithms, and their fusion into an
anticipated customer decision. So, the point of departure of
the approach is the acquired image of a collagen plate, and
the reference is given by two-class decisions of the inspect-
ing personal, which is trained in the procedure to reflect cus-
tomer demands by their own decisions. In between, proce-
dures are needed that may model the subjective decisions on
whole-plate appearance. Summarizing it can be stated that
the prototype system attains the simulation of the end user’s
aesthetic evaluation of the plates, which is undertaken in the
production line by the inspecting personal.

The underlying modular framework of the system will be
shortly presented in section 2. The basic idea behind it is to
employ the stacking of fuzzy computations from low-level
image features to a final class decision. The components
of the framework treat specific texture detection problems
with different binarization approaches. The evaluation of
the binary images delivered by the binarization modules is
realized through a hierarchical network of fuzzy fusion op-
erators. More details on the framework itself and the em-
ployment of fuzzy concepts can be found in [9] [11].

The main achievment presented here targets the prob-
lem of adaption of the final evaluation to the decisions of a
human making the same inspection. In the presented frame-
work this problem maps to the problem of adapting the fuzzy
densities, which are used in the fuzzy integral giving the fi-
nal decision. How this task is achieved by using genetic
algorithm will be shown in section 3 of this paper. Finally,
the reader can find the conclusions in section 4.

2 Framework for Perceptual Relevance Evalu-
ation

The purpose of the visual inspection system prototype is
the evaluation of the perceptual relevance of different fault
types (e.g. holes, eddies) on collagen plates (see Fig. 1).
The framework is basically composed of a processing chain
of alternating Binary Pattern Processing Modules (BPPM;),
each of them having the same internal structure. These mod-
ules reduce the grayvalue domain of the input images to a
common binary one by detecting a specific type of faults.
Thus all fault types can be further analyzed in the same way.
Some additional testing modules can be found between such
modules (see Fig. 2). The testing modules, where a fast test-
ing routine based on reduced information is undertaken, are
optional design components. Their main purpose is to by-
pass a BPPM (possibly time-costly) computations, if there
is no evidence for the faults, which are processed by that

BPPM.
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Figure 2: Framework for perceptual relevance evaluation.
Different fault types, whose detection presents increasing
complexity from the left to the right, are detected through
different Binary Pattern Processing Module (BPPM;).
Different Test modules (T'est;;) are interpolated among
them in order to break the analysis and thus to optimize the
performance of the system in terms of detection time. The
BPPMs deliver a decision on the relevance of the analyzed
fault (F).

Each BPPM has access to the acquired image and to the
evaluation of the foregoing testing module. Hence, the pro-
cessing of each BPPM is independent of the processing of
the others, but may refer to the results of the foregoing mod-
ules. Modules for the detection of the more frequent faults,
or of the more simple to detect faults should come first in
the chain. Since the appearance of a sufficient relevant fault
in foregoing modules can interrupt the more time consum-
ing computation in later ones, the system is computationally
optimized.
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Figure 3: Structure of a Binary Pattern Processing Module.
Although the faults to be treated are different, the BPPM
maintain the same structure up to the number of parallel
binarizations. CCA: Connected Component Analysis.

Each single BPPM is designed for a particular fault type,
which is defined with respect to the fault’s morphological
and contrast structure. Each module is composed by a pre-
processing, a binarization, a fuzzy feature extraction and
a fuzzy evaluation stages (see Fig. 3). In the binarization
stage, a set of k binarizing procedures is performed in par-
allel, giving k resulting binary images. These images act as
complementary pieces of evidence in the analysis of the ob-
ject under inspection. So far, four basic designs of a BPPM
for four different fault types have been implemented (for a



detailed explanation the reader is referred to [9]). A taxon-
omy of these types is given as follows:

Strong-contrast localized faults appear as an area pre-
senting a grayvalue very different from the image back-
ground. Only one binarization operation is applied, which
may be an interval thresholding.

Long-range faults are not related to a strong local con-
trast, but to a distortion within the global distribution of
grayvalues within the image. Such faults may be detected
by employing the auto-lookup procedure [9] based on the
co-occurrence matrix [7] of a subset of pixels from the im-
age. The procedure acts as a novelty filter (see Fig. 4).

Auto-Lookup Images

Original Image Binary Fusion

Figure 4: Auto-Lookup based procedure. From the acquired
image, five co-occurrence matrices [7] are derived at five
randomly located windows. Then, for each co-occurrence
matrix, the auto-lookup procedure [9] is performed on the
whole image. As a result dark regions stand for “atypical”
regions.

Low-contrast faults are characterized by its low con-
trast to the background. For their treatment, the framework
called Lucifer2 [8] may be used. The purpose of the frame-
work is the automated generation of texture filters given the
original and the expected goal images.

Frequency related faults appear in form of a disruption
of the uniformity resulting from the repetition of a basic
element. For its detection a Gabor image decomposition
[2] for different spectral bands is calculated following the
schemata presented in [10]. Finally, the total image energy
in the analyzed spectral bands is computed and thresholded.

A fusion procedure derives a binary image by applying
logical operators on the k images delivered by the binariza-
tion stage. The foreground (or Black pixels) of that binary
image are candidates for perceptual faults which will be
fuzzy processed in the following stages. The CCA module
connects components from the binary fused image, which
are perceptual fault regions, and removes noise that remained
after the binary fusion.

The fuzzy evaluation of the binary image is undertaken
by a network of fusion operators (see below). Thus, the net-
work closes the gap between binary pixel information and
the relevance of the defect under inspection. As a result

each BPPM delivers a pair of fuzzy membership degrees
upon two classes (“no relevant faultiness”, “relevant faulti-
ness”). For instance, the vector (0.3, 0.7) would indicate an
inspected objet where the analyzed texture fault are more
perceptually relevant than irrelevant.

The final decision for the rejection of a piece upon each
defect type is undertaken by the production system based on

this information.

2.1 Fuzzy Aggregation for Perceptual Relevance Evalu-
ation

The binary images extracted by the parallel binarization sub-
modules (see Fig. 3) have to be fuzzy processed in order to
better approximate the desired subjective evaluation.

The analysis of the binary images obtained is undertaken
at this point by a network of fuzzy aggregation operators
(see Fig. 5), where the complexity of the problem attached
in each following stage needs the usage of operators of also
increasing complexity. This concept has been analyzed in
detail in [12]. With each fusion operator in the network a
new abstraction level in the way from pixel information to
the quantification of the perceptual relevance of the defects
is achieved. The different stages will be analyzed in the

following.
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Figure 5: Hierarchically organized network of fusion opera-
tors used in the here presented paper for the fuzzy evaluation
of binary images. The operators of increasing softiness [12]
are in charge of tasks of increasing complexity. These cor-
respond to increasing levels of abstraction in the evaluation
from the consideration of pixel information, value(x, y), to
the result in form of a double fuzzy membership degree ex-
pressing “faultiness”. CLOP: Classical Operators; OWA:
Ordered Weighted Averaging operators; FUZZ: fuzzifica-
tion stage; CFI: Choquet Fuzzy Integral.

At first the remaining connected components are mea-
sured (see Fig. 6) through classical operators as the statisti-
cal first moment of the black pixel positions or the sum of
pixel values (1 or 0). As a result, local geometric features



for each detected fault are extracted. E.g. height, width,
area, perimeter, roundness.
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Figure 6: Measuring of binary patterns after CCA. Geo-
metric features for each detected fault are extracted. COG:
Center of gravity.

Then, a holistic description of the local features is needed,
in order to get global description of the elements under anal-
ysis. For that end, traditional fusion operators on the one
hand and Ordered Weighted Averaging (OWA) operators on
the other are applied on them. The employment of tradi-
tional fusion operators is trivial, e.g. computation of the
number of faults in an item. On the other hand it is worth
detailing the employment of OWAs. The global descriptor
obtained up to them can be considered as a meta-feature,
resulting from the fuzzy aggregation of the local fault fea-
tures.

The weighting configuration of the OWAs, which are
softer aggregation operators than traditionally used ones [1],
increase the flexibility. Since the weighting is done by tak-
ing into consideration the numerical ranking of the features,
the result can be biased for giving preference to a deter-
mined range of values or for reinforcing the presence of co-
incident ones [17]. Furthermore, the usage of the OWAs
[16] allows the comparison of vectors with different num-
ber of components without suffering the low-pass filtering
effect of traditionally used ones, e.g. average. An example
of the usage of the OWA weights and its effect on the result
is shown in Fig. 7b.

The global descriptors till this stage are fuzzified when
necessary by defining linguistic terms with trapezoidal fuzzy
membership functions (see Fig. 7c). The fuzzification of the
meta-features, which apply a linguistic descriptor on them,
eases the conceptual development and parameterization of
the following stages. Moreover the usage of two opposed
fuzzy features increase the robustness of the evaluation sys-
tem.

The last stage of the hierarchical network of fuzzy ag-
gregation operators (see Fig. 5) is implemented through a
Choquet Integral. This operator attains binding the differ-
ent fuzzy meta-features in order to make a decision over the
goodness of the item. Thus for each perceptual fault class
the fuzzy meta-features are fused into a value from [0, 1] by
using the Choquet fuzzy integral in order to characterize the
perceptual relevance of the fault in form of a membership
degree. The application of an aggregation operator can pro-
duce such a membership function.

The most important reason for the application of the fuzzy
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Figure 7: Example of the employment of OWAs in the com-
putation of fuzzy meta-features. The image shows the exem-
plary computation of the meta-roundness of a plate based on
the fuzzy aggregation of the local features Perimeter/Area
(P/A) (a). (b) A weight configuration very sensitive to the
presence of just one fault with circular form is displayed at
the top. On the contrary if a detection of more than one
elongated fault is desired, a configuration like the one at
the bottom would be used. (c) Example of fuzzification
functions for the computation of fuzzy meta-features (in this
case, meta-roundness). The result of the OWAs is fuzzified
with trapezoidal fuzzifying functions.

integral is the capability of this fuzzy operator for fusing in-
formation taking into consideration the a priori importance
of both individual and groups of attributes. The fusion of the
different fuzzy features is needed in order to find the joint
perceptual relevance of the faults in the object under inspec-
tion. In such a process the interaction between the different
fuzzy features has to be considered. The fuzzy integral is
the only fuzzy fusion operator known so far to allow such a
characterization [5].

The kind of analysis undertaken reflects in the result the
different possibilities of interaction. E.g., if the presence of
defects on the plate border is very important, the result of
the relevance quantification should increase; if such a pres-
ence is not so important but coincides with a very big defect,
the relevance should also increase; if the defects are small
and there are not so much of them, the relevance decreases.
Such a characterization could have been undertaken also
with a system of fuzzy rules. However, the fuzzy integral
approach is more synthetic and comprehensive from the de-
veloper point of view. When the kind of interactions to
be characterized are very complex or numerous, the num-
ber of rules increase so much that the problem is no longer
tractable. Furthermore, in many cases the descriptions de-
livered by the inspection experts are difficult to collect, if
not even full of contradictions. The automated finding of
the fuzzy measures helps avoiding this problem and allows
an easier redesign of the feature extraction stage.

It should be noted here that the Choquet Fuzzy Integral
has been already used as classificator in pattern recogni-
tion problems, where its performance was superior to that of
other classificators, e.g. multilayer perceptron, bayesian in-
dependent classification [4]. Moreover the parameterization
of the fuzzy integral was taken into consideration. Diverse
algorithms have been presented for the parameterization of
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Figure 8: (a) Results obtained on a 39 plates training set. (b) Results obtained on a 84 plates test set with the automatically

determined fuzzy measure coefficients.
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Figure 9: Results obtained on a 129 plates training set (a) using general fuzzy measures and (b) A—fuzzy measures.

the Choquet integral [4][5][15], while the Sugeno integral
[13] lacks of such a diversity.

3 Automated Parameterization of the Fuzzy In-
tegral

As already mentioned, the prototype system attains the eval-
uation of

the perceptual relevance of each type of fault taken in-
dividually. Thus the final output of the system is a two-
component vector for each plate and fault, which expresses
the membership degree of the plate to the “accepted” and
the “rejected” classes. This vector can be understood as a
two-component feature for each fault type, upon which an
end decision of the commercialization channel of the corre-
sponding plate is to be made, e.g. some plates are sold as
first choice quality, other ones as second choice,

The results of the system are analyzed by taking into
consideration just the image understanding part of the sys-
tem. Thus the binary images are considered already com-
puted. Up to this point the features are extracted and fuzzi-
fied by undergoing the network of fuzzy fusion operators
(see Fig. 5). It is worth mentioning that the fuzzy mem-
bership functions are heuristically defined on hand of the

classification results. This process is not trivial and the
achieved classification results demonstrated to depend on
this stage. Therefore its automation can systemize the fu-
ture implementations of the framework. The results of the
stage, where the resulting two sets of fuzzy meta-features
are fused with a Choquet Fuzzy Integral [6] with respect to
two different fuzzy measures, are analyzed in the following.

The fuzzy measures are constructed through genetic al-
gorithms. The genetic algorithm implemented is a steady-
state genetic algorithm, which guarantees not losing the bet-
ter result in each generation. The genetic algorithms em-
ploys: random initialization, a rank selection operator, a
two-point crossover operator with probability of 0.7, mu-
tation probability of 0.01, and replacement probability of
0.95 [3]. The settings of the genetic algorithm were found
heuristically. Finally the perceptual relevance of the fault is
delivered in form of a two-component vector, where each
component is defined in [0, 1].

The generalization capability of the system is first an-
alyzed. A-fuzzy measures are used for that purpose. The
BPPM taken into consideration analyzes the relevance of
textured areas on the plates. The training of the fuzzy in-
tegral was undertaken for this BPPM based on a set of 39
plates.



Table 1: Statistical comparison of results obtained through the application of the fuzzy integral with respect to general ()
and A—fuzzy measures (uy). p: Crisp recognition rate of the system by taking into consideration the larger membership
degree as a crisp result. MSE: Mean square error between the “relevance” membership established by the experts and
the one obtained. ojssr: Variance of the mean square error. Values are taken as average over different simulations and

computed for three different data sets.

Set I Set II Set I+11
p | MSE | opsE p | MSE | opsE p MSE | oysE
I 92.2 | 0.15 0.01 86.7 | 0.167 | 0.041 86.82 | 0.184 | 0.028
wx || 83.0 | 0.15 0.01 83.0 | 0.16 0.04 86.82 | 0.184 | 0.034

Table 2: Statistical analysis of the results obtained by the automated industrial system on 11 evaluation data sets from
production line. EFT: Error in fault type. FR: False rejectance. FA: False acceptance. €,,: Minimum. €: Average. o.:

Variance. €;,: Maximum.

[ Set | 1 ]2]3]45]6]7[8]9]10[1]emn]| € |oc]enm]
EFT || 1 | 1| 7 {139 |2 |5]|11 |13 | 4 4 1 64 | 45| 13
FR 1 {31703 (92|04 4 4 0 28 |126] 9
FA |24 (9|21 |17 |11 |3 |5] 5 | 6 |53]11 3 1107 (7.1 24

The obtained results on the training set after determining
the A-fuzzy measure are depicted in Fig. 8a. The consid-
eration of the trend condition in the fitness function as de-
scribed in the former section improved the results in terms
of false accepted/rejected rates and of approximation to the
relevance established by the experts. Taking into considera-
tion the larger membership degree as a crisp result the sys-
tem achieved a recognition rate of 84.61% on the training
set.

The results obtained on a test set of 84 plates are de-
picted in figure 8b. The recognition rate with the test set
was of 70.23%. On hand of these results the generalization
capability of the evaluation framework can be analyzed.

In another simulation the influence of type of fuzzy mea-
sures to be used in the classification result is analyzed. Thus
the training phase is completed using a data set of 129 items.
The simulation compares the classification results obtained
by using A— and general fuzzy measures (see Fig. 9). Al-
though the recognition rate is the same (86.82%) for both
types of fuzzy measure in the here presented simulation,
the greater flexibility of the general fuzzy measures in front
of the A\ ones improve the performance of the system (see
Tab. 1). Moreover the system presents more errors with the
A-fuzzy measures (12.4%) in the set of items qualified as
“accepted” by the experts than with the general ones (8.5%).
These type of items are the most common ones in the pro-
duction line.

Furthermore the fuzzy integral with respect to the gen-
eral fuzzy measures seems to fit better the evaluation of the
inspector personal. This lightly better performance can be
observed on hand of the variance of the mean square error
(onsE) between the relevance curve determined by the ex-
perts (see gray surface in Fig. 9) and the results of the fuzzy
integral. The MSEs and their variances are summarized in
Tab. 1. Although the general fuzzy measures achieve a bet-
ter performance for all data sets, the difference between the
results obtained with both types of measures strongly de-
pends on the considered data set. For instance the fuzzy

integral with respect to the general fuzzy measures outper-
foms the results obtained with respect to the A\-fuzzy mea-
sures in the first data set (see Tab. 1). Taking into consider-
ation all these facts general fuzzy measures are chosen for
the implementation of the final system.

The installed prototype system was tested with 11 differ-
ent evaluation data sets, which are composed by 100 plates
taken directly from the production line. The results obtained
on these evaluation sets can be observed in Tab. 2. The
system had been previously trained and tested with other
data sets. Thus the results can be used for the evaluation of
the system’s generalization as well. Three parameters char-
acterize the goodness of the system. First the percentage
of plates with relevant faultiness that present a false fault
type as the principal factor influencing its final classifica-
tion (EFT). Finally the false rejectance (FR) and acceptance
(FA) rates are given.

4 Conclusions

The here presented framework has been successfully im-
plemented. The slight differences between the recognition
rates of the experimental results and those of the industrial
system lays on the fact that the training and test sets just
take faulty plates into consideration.

After analyzing the results on hand of the binary images
entering the fuzzy evaluation subsystem it could be stated
that a great part of the errors were due to external factors.
Among them is worth mentioning the presence of contra-
dictions in the expected output membership degrees estab-
lished by the experts. The interactive assessment of these
output membership degrees taking into consideration the re-
sults of the automated system should be undertaken in order
to minimize such errors.
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