No-Free-Lunch Theorems and the Diversity of
Algorithms

Mario Koppen
Dept. of Security and Inspection Technologies
Fraunhofer IPK
Pascalstr. 8-9, 10587 Berlin, Germany
Email: mario.koeppen@ipk.fhg.de

Abstract—In this paper, the No-Free-Lunch theorem is ex- performance of an algorithm compared to algorithnd for
tended to subsets of functions. It is shown that for algorithm g set of functions is doing nothing more than showing the
a_performing better on a set of functions than algorithm b, ayistance of another set of functions, for whictvill perform
there has to be another subset of functions on which performs
better in average than a. To achieve a performance evaluation better th"?‘m' N.othlng more is known about _th's oth'er function
for an algorithm, it is not sufficient to demonstrate its better S€t than its existence, as long as the function set is assumed to
performance on a given set of functions. Instead of this, the be uniformly distributed, and alternate viewpoints are not taken
diversity of an algorithm will be considered in this paper in more jnto account (as the possible elimination of high complexity
detail. The total number of possible algorithms will be computed functions). However, there is another aspect on algorithm

and compared with the number of algorithm instances that a f that h t b idered far |
random search or a population-based algorithm can have. It performance thal has not been considered so far in more

comes out that the number of different random searches is very detail: the diversity of an algorithm. So, by speaking about an
small in comparison to the total number of algorithms. On the algorithm like "genetic algorithm”, we usually do not refer to a
other hand, population-based algorithms are principally able to single algorithm but to a distribution of algorithms, according
cover the set of all possible algorithms. The smaller variance of 1, gjfferent configurations, runtime parameter settings and
algorithm performance, measured by the repeated application of . . .
the algorithm under different settings on different random sets pseudo?ran.dom_ number sequences. The question, wh|ch W|II
of functions, comes out to be a value reflecting the higher count b€ studied in this paper and considered an alternate viewpoint
of instances. on algorithm performance is: how many different algorithms
can be provided by such an algorithm class, and how does this
number behave with respect to the total number of possible
The No-Free-Lunch theorem [9][10] states that without arglgorithms? The answer gives us a ranking for algorithms
structural assumption on a search or optimization probleaxcording to their smaller or larger number of instances. It
no algorithm can perform better than blind search. Seve@mes out that by such a ranking, random search is worst,
discussions on this theorem were provided in the last decad#ijle evolutionary approaches are (at least theoretically) able
including discussion of information theoretic aspects (e.g. [2]p provide any search sequence that is possible. To see this,
alternate proofs and notations [6][4], and extension to othee are going to use the framework of the No-Free-Lunch
problem classes (as multi-objective optimization [1][5]). Théheorem itself to compute the total number of algorithms and
general viewpoint taken by the proof of this theorem is tthe number of instances that a certain algorithm can have.
average the performance ovell possible quality functions. Section Il of the paper states and proves the No-Free-
The quality functions are assumed to be uniformly distributedunch theorem for sets of functions. Then, in section Ill, we
Once the averaging is performed over a subset of such fuderive the total number of algorithm instances and prove the
tions, this theorem will only hold if and only if this subsetcorrectness of this derivation. The alternate viewpoint on the
is closed under permutation (this is the so-called Generalizadmber of algorithm instances is introduced and discussed in
No-Free-Lunch theorem [7]). Recent discussion claimed thsection IV, followed by a discussion of its relation to algorithm
since the majority of function subsets is not closed undperformance variance in section V. Section V also provides a
permutation, the No-Free-Lunch theorem does not seempicedure to estimate the number of instances by using the
have much practical importance [3]. The averaging over alariance of algorithm performance.
functions involves a vast majority of functions that will never
appear in a practical optimization scenario (an approach thht NO-FREE-LUNCH THEOREMS FORSETS OFFUNCTIONS
was used e.g. to point out the usability of gray encoding in The following notation will be used. B& andY two finite
[8]). However, in this paper we will continue in this mattersets, andf; a mapping fromX to Y. There areN = |Y|IXI
and show that the Generalized No-Free-Lunch theorem giv&sch mappings, thus=1,..., N.
raise to a further theorem, stating the equal average of averagBlow we consider a deterministic, non-repeating algorithm
performances over all subsets of functions that are not closedApplying algorithma for m steps to a functiorf, it samples
under permutation. In this context, demonstrating the bett@n ordered sey:, v, ..., y.) Of function values off, and

I. INTRODUCTION

a performance measugeassigns a performance value to thisn this sum, each termp, . (f) appears(fl’_‘ll) times, since
set of function values. We will indicate this performance valugere are exacﬂ)(f;’_—ll) subsets of, of sizen that containf

aspa,m(/fi) in the following. _ (each of these subsets is the $¢} unified with a subset of
With II we |nd|cate_ a permutation of the numbers, — 1) elements ofs, \ {f}, which has(N — 1) elements).
(1,2,...,]X]) and we write So, we may continue
(1,2, [X]) = (1), 1L(2), ..., T(X)) v
Now we define the permutation of a functighas follows: Pam(Tna) = (n N 1) > Pam(f)
when f mapsz;, to y, thenIl(f) mapszyy) to yy. f
Further we specify some sets. The symbgldenotes the _ N(N-1
set ofall functions f mappingX to Y. With s,, we denote a T a\n-1 Pa.m(Sa)
subset ofs, with exactlyn elementss,, = (f1, f2,.-., fn)-

The sets, of all functions is c.u.p., thus

Definition 1. The sets,, is closed under permutation (C.U.p.)
iff Pa,m (Sa) = pb,m(Sa)

Vi(f € sn — T(f) € sn) which givesp, i (Tha) = pbm(The) IN CONSequence:

The performance measugeis extended to sets of functions: Lemma 2. The total performance of any two algorithmas
and b and any number of steps < |X| on the set of all

1 n .
Pam(sn) = - z;pa7,rn(fi) subsets of, is equal.
1=

which stands for the average performance of algorithaiter Pam(Tna) = Po.m(Tna)

m steps on the set, of n functions. Finally we consider the set of all subsets f that are not
The symbolT,,; denotes a set of setss,,, i.e. subsets of c.u.p. Using the two lemmas, we get for any two algorithms

s, of n elements. A sef;,; is said to be c.u.p. if and only if ¢ andb and any number of steps < | X|:

each element of’,; is c.u.p. and theotal performance of a

on T, is given by

pa,m(Tnn) = pa,m(Tna) - pa,m(Tnc)
pa,m<Tnl> = Z pmm(sn) = pbﬁm(Tna) _pb,m(Tnc)
sn €Ty
I = pb,m(Tnn)

(note that the total performance ist divided by!).
With T}, we denote the set ofll subsets ofs, of sizen, So, for anyn the total performance on all sets offunctions
with T;,. the set of all subsets of, of sizen that are c.u.p. that are not c.u.p. does not depend on the algorithm. Finally,
and withT,,,, the set of all subsets af, of sizen that are not if K is the number of all subsets ef that are not c.u.p. we
c.u.p. (thus having',.o = The + Tnn)- get the No Free Lunch Theorems for subsets of functions:
Now we can formulate the Generalized No-Free-Lun

Theorem [7] as: CPheorem 2. For any two algorithms: andb and any number

of stepsm < | X| it holds

Theorem 1. We havep, ,,,(sn) = ps,m(s,) for all algorithms N N

a and b and each number of steps < | X| if and only if s, 1 oy L T 1
iS C.U.p. K ;pa,m(zn) K Lzzlpbm’b(zn) ()

This directly gives that froni,,; being c.u.p. it follows that The average of the average performances of an algorithm
Pa.m(Tnt) = po,m(Tny) and as a special case: over all subsets of functions that are not closed under permu-

Lemma 1. The total performance of any two algorithras tation does not depend on the algorithin The alternative

and b and any number of steps < |X| on the set of all formulation is that if an algorithmu shows better average
subsets of, that are c.u.p. is equa_l performance on a set of functions than an algorithrfthis
a u.p. .

can only happen if this set of functions is not closed under
Pa,m(Tnc) = po,m(Tne) permutation) than nothing more was shown as the existence of
Now we consider the total performance on the setatif another set of functions (not necessarily of same size, but not

subsets of size of s, and show that this also does not depenglosed under permutation) for whitwill show better average
on the algorithm: performance than algorithm In no way, the "superiority” of

a has been demonstrated.
To make the concept behind the proof more clear, we may

Pam(Tna) =Y _Pam(sn) consider an example. We choose férthe setX = (z1,x5)
on) and forY the setY” = (0,1). With f;; (¢,j € Y) we denote
= Z it Z Pam (f) the function that maps; to i andz, to j (e.g. fo1 mapsz;
" :

Sn fE€sn to 0 andz, to 1).

There are 22 = 4 possible functions f: s, = possible mappingsf : X — Y by fi, fo,..., fn With
(foo, fo1, fi0, f11). This set has 16 subsets. Out of thes® = |Y|[X|. The setX = {z1,zs,...,2,} with n = |X]|

subsets, one subset has 0 elements, 4 subsets have one eleisetite domain of allf; and Y = {yi,v2,...,y)y|} the
6 subsets have two elements, 4 subsets have 3 elementsamtbmain. Related to this (fixed) indexing, theh function
one subset has four elements. column fcy is the set of all function values, to whichy
For | X| = 2 we have two permutations dfl,2): II; = is mapped: fcx, = {fi(zk), fo(xk),..., fn(xg)}. The set
(1,2) andII, = (2,1). For exampleIl>(fo1) = fio and of all function values of a functiory; will be denoted by
11 (foo) = 2(foo) = foo- y(fi) = {fi(xl)a fi(xa),.. »fz(xn)}
There are 8 subsets closed under permutatipn(fq), With a we denote a deterministic, non-repeating algorithm,

(f11), (foo, f11), (for, f10), (foo, fo1, f10)s (fo1, fi0, f11) @nd which is applicable to any; mappingX to Y. The specifica-
(foo, fo1, f10, f11)- The remaining 8 subsets are not closed ution is given by a suite of mappings from partial sampling
der permutation(fo1), (f10), (foo, fo1), (foo, f10), (fo1, f11), Sequences tac-values not sampled so far. In more detail:
(f10, f11), (foo, fo1, f11) and(foo, f10, f11). FOr example, for initially, an algorithm, if applied to a functiorf, starts with
the set(f1o, f11) the permutatioril, transformsfio into fo; the (deterministic) choice of an element, of X. Then, f
but fo1 is not an element of the set. provides the function valug,, = f(z.,). Thus, algorithm
For simplicity we write p(f) instead ofp, ,,(f) in the « initially builds the sampling listS; = ((xq,,%.,)) and
following. So, the average of the average performances e@dmputes the next sampling valug, # z,, from S; by
algorithm a after m steps over all subsets of functions that,, = a[S;]. With y,, = f(z,.,) we can extend the sampling
are not closed under permutation is given by the expressiadlist Sy = S1+(x,,, y4,) With "+” standing for list appending.
The next sampling point is a function 8%, which is given by
the specification of the algorithm;,, = a[S5]. In the (k+1)-

1
pPo= g~ {p(fm) +p(f10) + th step & < N) of the algorithm, we append to the partial sam-
1 1 pling list Sk, = ((TaysYay)s- - -5 (Tays Ya,) the next sampling
+§(p(foo) + p(fo1)) + 5(p(foo) + p(f10)) + point z,, ,,, derived by the algorithm fronf, and which
1((Fou) + p(F11)) + }((F1o) + p(f)) is different from allz,, with i = 1,2,...,k evaluated so far,
3 (Plor) +p(f12)) + 5 (P(fr0) +P(f1a and the corresponding function valyg, ,, = f(za,,,). Once
1 1 k = N — 1, the algorithm terminates in the next step. Now,
Jr3 (p(foo) +p(for) +(f11)) ((foo) the set ofy values{ya, , Ya,,- - - » ¥a, } has to be a permutation
+p(f10) +p(f11))} of the function valueq f(x1), f(z2), ..., f(zn)} Of f. In that

sense, an algorithm can be specified by stepwise constructing
Now the generalized No Free Lunch theorems gives thatpermutation of the (unknown) function values. We denote
the average performances on subsets that are closed umlderordered set of function values sampled by the algorithm
permutations are constant values with respect to the algoritivien applied tof with y,(f).
(but they depend om, of course). This gives the equations: An important fact is that for different functiong, and
/v, these permutations have to be different. Assume that an

P(foo) = 1 algorithm ¢ samples they-values of two functionsf in the
p(for) +p(f10) = c2 same order. By induction, we can show that in such a case the
p(f11) = c3 functions are equal (among other, see [5] for the proof).
with ¢4, co andcs the corresponding constants. We use this foemma 3. For any algorithma and any two functiong, and
resort the terms and evaluate the expressionPfor o va(fa) = ya(fo) ff fo = fo.
1 ; ; .
8P = ¢y + 1 + o+ 3 + ¢ + e + s+ = ¢ This lemma is a precursor for the_: Ger_lerallze_d No Free Lunch
2 2 3 3 3 Theorem. Thus, once an algorithm is applied toall N
Thus it can be easily seen that the expressionHawill also functions f; (i = 1,..., N) step by step, the ordered set of
not depend on the algorithm. sampling sequences,(f1),---,ya(fn)} iS @ permutation of

the ordered set of function mappings
I11. NUMBER OF ALGORITHMS

The foregoing section demonstrated that the testing of Y/X ={y(f1),y(f2):---,y(fn)}.
algorithms by applying them onto a set of given functlonﬁ
(usually called a benchmark) does not prove so much abou
the superiority of an algorithm. We are going to introduce a * DYy the choice ofz,, and the complete set of mappings
different viewpoint on algorithm performance here, related to ~ Zaxs: = a[Sk] for k=2, —1,0r
the diversity of an algorithm. « by the permutation OY/ X :

The framework of the NFL theorems allows for the comUsing the first specification, we can compute the total number
putation of the number of different algorithms for giverof different algorithms, which can be applied to all mappings
set sizes|X| and |Y|. Assume that we have indexed allf; : X — Y with 1 < ¢ < N. For doing so, we simply

gomes out that an algorithm is fully specified either

follow a scheme of stepwise assignments. Consider the cése yo, ..., yr) Of k elements oft”. Now, i and; shall be two
X ={z1,22,23,24} andY = {0,1} and the scheme: different of the remaining indices, i.e; ¢ II,x; ¢ II,i # j

(thereforek < n — 1).
Lay | Lagy | Lazr | Tas

Lays Now consider the set

IGSQ I(l43
Tay, M ={l| fi(m) =y, film2) = y2,..., filmk) = yi}

Zazs | Tass | Tass (with 1 <1 < N) and for the index and a fixedy, € Y its

Layg subset

Lazy | Layr M, = {l |l c M A fl(xl) = ya}_
$a@

The setM; has exactly|Y | XI=(++1) elementsl, and for all

In the first step, an algorithm has to specify an indexThen, ©f them is fi(z;) = y, per definition.
the value off(x,,) can be either O or 1. In the second ste
the algorithm selects one of the three remainingalues,
depending on the value of(z,,). If it is O, the algorithm My =A{l| fi(m1) = y1,- -, [ilmk) = Yk, f1(xi) = ya }
selects as second-value z,,,, if it is 1 then z,,,. In the
third step, the algorithm selects one of the two remaining
values. Now, there are the four cases that the first two functi8
values sampled were eith¢d, 0), (0,1), (1,0) or (1,1). In " pefining for any index sef the operatol; with
each of these four cases, the algorithm may select a different
z-value. Then, for the fourth step, only onevalue remains, Ci(l) ={fj(z:)|j € I}
S0 the selection is unique. : __then this meang;(M;) # C;(M,) and usingM, = M; C
So, in this case we can completely specify an algorlthmM it follows
[k;y providing the 7 |nd|ce:<a1,a21_, a22,ail7a32,a33 andasy. C(M) # C;(M)
or a; there are four choices, sin¢&’| = 4. For aqg; as well
as forass We can choose one out of the three remaining However, while specifying the algorithim we had to assign
values (including the case that; = a2), giving 3-3 = 9 the next testing point:; for any suchM, so different as-
possibilities, and finally2* possibilities for the third step. So, signments fori and M will give different (partial) outcomes

F}“\Iext, sincek < n — 1, we consider the set

(againl < I < N) Obviously M, = M>, but M, contains
ply [Y[XI=(:+2) elements, for which fi(x;) = ya.

the total number of assignments4s 9 - 16 = 576. C;(M). Thus in general, different assignments will specify
This scheme can be easily extended to the general casedlifferent algorithms and the number of algorithms equals the
the first step, we have = |X| choices for the index; of the number of possible assignments. O

first z-value. According to theY'| possible values of (z,,)
there argdY’| independent cases, for which a second indgx
from the (|X| — 1) remaining indices has to be selected. Thi
gives (| X| — 1)IY'I choices for the second step. For theh
step, one hasY'|*~! cases, and in each case one can choose

To illustrate the proof, we take as an example =
x1, 22,23} andY = {0,1}, thus having eight possible
nctions that are listed below.

. . l T xTo T3
one from the remaining| X| — (k — 1)) indices ofz-values. 1 olo1lo
So, we may formulate the following theorem: 2 olol1
Theorem 3. The number of different algorithms that can be 301110
applied to all functions mapping a finite sat to a finite set 410111
Y is given by 5 1]0]0
X|-1 6 1|01
- . 71110
No= I (1x1-nM. 2) g 111

k=0

Proof. That equation 2 is an upper bound for the number gfe table shows the case — 1,m = 2o,y1 = 1 andi =
algorithms has been demonstrated in the foregoing paragrap’r}; = 3. The setM of all indices! for which f;(z3) = 1 is
It remains to show that any two different assignments gfy — {3,4,7,8}. Then, M is the subset of indices of M
indices to for which alsof;(z1) = 1 holds. This is the set/; = {7,8}.
The setlM; is the set of indice$ for which f;(z2) = 1 and
fi(z1) = 1, which is also the sef; = {7,8}. As we can
will indeed give two different permutations df/ X, hence see, the sef’; (M;) = {1, 1} contains two times the value 1
two different algorithms. (2 = |Y|XI=t+D) = 21) “while the setC3(Ms) = {0,1}
For showing this, consider the first elementsII = only contains one times the value 1L« |Y||XI~(k+2) — 20),
(my,ma,. .., m) Of a permutation ofzy, zo, ..., x,) and a set So, any algorithm specified by selecting at first, and then

al,agl,...,aa‘y|,a31,...,a3|y‘2,...,a|X|1,...,a|XHyUX\71

x1 In casef (z2) = 1 will have a different outcome af-values selected by: out of the remaining:-values, the more instances

than an algorithm, which selects first and thenzs in case the algorithm will have.

f(xz2) = 1. The proof basically generalizes this approach. We are considering the class @bpulation-based algo-

rithms. Such algorithms maintain a varying setealues

(the population) and base all decisions for the next sampling
In the foregoing section, we computed the numié; point and on the next population on thevalues of these

of different samplings of algorithms, when applied to alk-values and the pseudo-random numbers on the tape alone.

possible functionsf. Now, if we consider a particular algo- The problem of initializing such a population will be discussed

rithm, usually such an algorithm can provide more than orlow.

of such samplings, depending on its configuration and run-For our model situation, aftét steps we have a population

time parameters. We will refer to such different samplingsf size I with elements(z,,,®q,,--.,%q). Since we are

as algorithminstancesand are looking for the number ofconsidering a function set that was not distinguishable by the

instances that a given algorithm can have, in comparison digorithm so far, the algorithm will decide on the same next

the maximum numben,, of possible instances. sampling pointz for all these functions as well. However,
In particular we are considering the class of algorithmsye assumed to have twfy and f, in our function set with

which are using pseudo-random numbers to perform their(z) # fo(&). Altogether, there aréY| possible values for

internal computations. Among them we find random searcfi(z).

algorithms using mutation operation (like hill-climbing) andNow we introduce three operators:

algorithms using recombination (or crossover) operations, like1) Sefection: By using the next number(s) from the tape,
evolutionary algorithms. Such algorithms can be modeled in ~ gnd the values'(z,,) and f(z), an index1 < i < [+1

similarity to the concept of a very simplified Turing machine: is computed and used to selegt, or Z in casei = [+1.
assume that there is a linear tape with a sequence of numbers) rpuration: Given anyz,, by usiﬁg next number(s) from

(referring to configuration parameters, runtime parameters or the tape this sample point is transformed into any other
pseudo-random numbers). The tape is read out and moved ,, < x.
forward each time the algorithm needs one or more pseudo3) Recombination: Given any pair ofz-valuesz, andz,

random numbers to specify one of its operations (e.g. 10 py using next value(s) from the tape a valug is
apply_ mutation onto a bltstrlng). Thus it will be said thaF an assigned tor, andz,. In contrary to mutation, the set
algorithm performs an operation "randomly”. If we consider of attainable values:. can be restricted (as e.g. the

different tapes, the application of the algorithm may achieve crossover operation on two bitstrings can not result into
different instances, and if there is a distribution function for any bitstring).

the values on the tape, there will be a distribution function fcﬁased on such operation, we consider two algorithhis:

the\zNaIgorlthm |fnstan::es as well . b h b climbing (HC) as the iterated application of selection and
| c hmay retormu zte our quzsthn a.OUt t. e. r]lum € Mutation, anckvolutionary algorithm (EA) as the combination
algorithm Instances by using a design viewpoint: it we wa selection, selection, recombination and mutatidtow, we

to achieve agen instance of an algorithm, can we provi 8n discuss both algorithms to learn about their attainable
an appropriate sequence of numbers on the tape? number of instances

The simplest case here is the random search: in the decision) .
rule xx+1 = a[Sk], the value ofa will only depend onk and * Ca}se HCE' nge, the selr?ct|onlcan only dep(TInd onfthe
never ony,. This means, a random search is not directed by the value f(z). since everything else wgnt equally so far
y-values sampled so far. So, it can be easily seen that random for tV\:cO funcﬂor;s fi anddﬁfg and th'ls will Q'P‘]’e one
search has exactly! instances, each of which corresponds ?rzkothgun(()pjlvati;rnl)or”I s;fnr:of-\rﬁolissth(:: e(;ss(,)irkllee
o a permutation of the sample points:, z», .., za}. This function vzlueas off(:%)) m"I'hen mutation can trznsform
is obviously a small number, if compared to the maximum ' '

number N, of possible instances. So, the question is if we tk:/e izelﬁcteckf—\ﬁll:etil:toir?tny othswlvalltjhe ?Cvdumn?ntrlled
can obtain a larger number of instances or even all, and the avoidance of mutating into anyvalue that was sample

positive answer will come from the evolutionary approach. glre_z(ijdy). Thus, e;n hill cllm_lgllng z;:lg_orlthpw Cin maximally

To show this, we will consider the following model situa- bﬁflthi:)en (:rr;eir? +e1nepasy§|l %s(,:siglkcaeiag;st E)ncixr:ssi(tjz?,
tion: given is a set of functions that has not been distinguish- This means onc2Y| g l+Fi an hill climber can not '
able so far by an algorithra for & steps, but for stepk + 1), ' ’

for the first time we will get different results. We assume growdg :‘_ IIFaIg?nthmImstt'ancetshanymo‘reé V1 (141
f1 and f; to be two such functions, i.65x(f1) = Sk(f2), » Case EA: For two selections, there antn”(|Y, (I+1))

. ossible results, each of which may give a different next
thus following zj, 1|, = & but fi(z5i1) % folhsr)- P SUlLs, . €a !
So, if we want tg 1r|1jz:11ve anglgérithm tlé bg 1aible t?)(prg\lli)de sample point after applymg the recombination operation.
all possible instances, it is necessary that the algorithm has However, not all possible-values can be obtained this

to be able to decide on _a different;,, for_any different yes, in such a framework we ignore the fitness function completely. Here,
value f(xx+1). The more different sample poinig. o can be fitness has to be considered a technical means to perform the operations.

IV. ON ALGORITHM INSTANCES

way, so a further mutation is needed to transform them= 22 — z2, anda achieves a maximum df instances, then
into any other desired sample point (again excludingiinimum variance is
repetitions). It follows that a necessary condition for 1 1

an EA to provide all possible algorithm instances is Tmin = 77 N, N,

[Y| < (1+1)2. As we can see, this is a smaller effort than

for the case of an HC. who needs at least a populatié%WiCh is achieved iff allk probabilitiesw; are equal tol /.
of size|Y| -1 to achie;/e the same goal he higherk, the smaller the minimum variance. Thus, by

. . o . comparing variances of algorithms we get, basically, the same
. .TO_Obt.am a suff|C|ent_ criteria, we have to conS|der thF‘anking as for the number of instances. While there is no
initialization of an algorithm: the standard approach is g cequre to estimate the number of algorithm instances, the
perform a random search (RS) forsteps. It can be easily \4jance of its performance can be estimated by repeated

seen that this procedure makes some algorithm instangesjication of the algorithm with random "tapes” to a random
inaccessible by the algorithm, and, for large size$of and set of functions

|Y], the number of instances effectively vanishes against t88 1o final remarks:
total number of algorithms. Instead of this, we may consider
a "smart” diversity initialization (DI) to maintain a higher
diversity (despite of the fact that it does not seem to be useful
for HC or EA itself): select first element of the population
x4, randomly, then make the selection of the next element
depending onf(z,,) and do the same for the next initial
populationz-values until population has grown to sizeThis
makes sure that we will not loose any sampling sequence at the
beginning. Once using DI and making sure tfiat1)? > |V,
an EA becomes able to provide (by chance, or by providing
the needed values on the tapg) possible instances (as well
as for an HC with(l + 1) > |Y|)%.

So, we may conclude this section by providing a kind of
ranking among three famous algorithm classes according to
their number of different possible instances:

1) The No-Free-Lunch theorems points out the equal aver-
age performance of any algorithm, once applied to any
possible function. In a practical sense, it may be even of
interest to have an algorithm, which is coming close to
this average at all. If there is a smaller variance in the
algorithm outcome, it is more likely that the algorithm
is closer to this average. On the opposite, the "worst”
algorithm, random search will have a high variance in
the results, with a few excellent results and lots of
failures. This is reflected by the variance measure.
2) The viewpoint used in this paper on discussing the
number of algorithm instances can be extended to other
algorithms. However, the use of pseudo-random num-
bers in algorithms like EA and HC comes out to be of
an advantage to be (at least theoretically) able to provide
Ngps < Nyo < Nga < N, a large number of instances. _
3) An alternate performance measure for algorithms can

From the foregoing discussion it can also be seen that thus be described as follows: apply the algorithm under
the ability of an algorithm to provide more instances can varying setups and differing pseudo-random numbers,
be increased by a higher "socialization” of the operators, each time on a random set of quality functions, and
i.e. by using higher order operators than mutation (order 1) get an estimate for the variance of the algorithm per-
or recombination (of order 2). formance. The fewer this variance, the “better’ the
algorithm (i.e. the higher the number of instances that
can be expected, or the more the algorithm is differing

Finally, we will shortly discuss the reasonable question: from random search, or the more it is likely that the
Is it useful for an algorithm to have more instances than a|gorithm can approach the average performance)_
another algorithm? To approach an answer here, we consider
all algorithm instances; of a particular algorithmz. Caused
by the distribution of its configuration parameters and pseuda} D. W. Corne and J. D. Knowles, "No Free Lunch and Free Leftovers The-

random numbers, the algorithm will instantiate an) /with orems for Multiobjective Optimization Problems” Evolutionary Multi-
9 Criterion Optimization (EMO 2003) Second International Conference

a probabi!itywi with Zz w; = 1. From the NO'Free'Lu_nCh Faro, Portugal, April 2003, Proceedings, pp. 327-341, Springer LNCS,
theorem, it can be easily seen that different values.ovill 2003.

not have any influence of the performance wfeven if it [2] T. M. English, "Optimization is Easy and Learning is Hard in the
Typical Function,” inProceedings of the 2000 Congress on Evolutionary

is taken over all of its instances. However, the variance of computation (CEC 2000)A. Zalzala et al., Eds., La Jolla, CA, USA,
the performances can be different! Even more, the minimum pp. 924-931, 2000.

variance can onlv be achieved whenallare equal. In case an[3] Ch. Igel and M. Toussaint, "On Classes of Functions for which No Free
y 2l q Lunch Results Hold,Information Processing Letters 8¢p. 317-321,

algorithm has a limited number of instances, it also achieves 5gq3.
its minimum variance when all instances are equally likelf4] M. Koppen and D. W. Wolpert and W. G. Macready, "Remarks on a

but anv algorithm with more instances can achieve a smaller Recent Paper on the No Free Lunch Theoreh&EE Trans. Evol. Comp.
y alg vol. 5(3), pp. 296-296, 2000.

variance. So, if we measure variance e.g. by the expressjgny. koppen, "On the Benchmarking of Multiobjective Optimization
Algorithms,” in Knowledge-Based Intelligent Information Systems, 7th
2|t has to be noted that for such a viewpoint the size of the population is Intl. Conference, KES200®xford, UK, September 2003, V. Palade et
related to the size o¥” and not the size oK al., Eds., Proceedings, Springer LNAI 2773, pp. 379-385, 2003.

V. DISCUSSION

REFERENCES

[6] N.J. Radcliffe and P. D. Surry, "Fundamental Limitations on Search Al-
gorithms: Evolutionary Computing in Perspective,”@omputer Science
Today: Recent Trends and Developméntvan Leeuwen, Ed. LNCS vol.
1000, pp. 275-291, 1995.

[7] C. Schumacher and M. D. Vose and L. D. Whitley, "The No Free Lunch
and Description Length,” inGenetic and Evolutionary Computation
Conference (GECCO 2001). Spector et al, Eds. San Francisco, CA,
2001.

[8] D. Whitley, "A Free Lunch Proof for Gray versus Binary Encodings,”
in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999)W. Banzhaf et al., Eds., Orlando, FL, USA, pp. 726-733,
1999.

[9] D. W. Wolpert and W. G. Macready, "No Free Lunch Theorems for
Search,"Technical Report SFI-TR-05-010, Santa Fe Instit@anta Fe,
NM, USA, 1995.

[10] D. W. Wolpert and W. G. Macready, "No Free Lunch Theorems for
Optimization,” IEEE Trans. Evol. Compvol. 1(1), pp. 67-82, 1997.

