
Fuzzy Fusion Fairness Relations for the Evaluation
of User Preference

Mario Köppen∗, Jun Okamoto† and Aoi Honda∗
∗Kyushu Institute of Technology

680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
Email: mkoeppen@ieee.org, aoi@cse.kyutech.ac.jp

†NTT Service Integration Laboratories, NTT Corporation
Email: okamoto.jun@lab.ntt.co.jp

Abstract—In this paper, formal representations for user prefer-
ences will be provided, which also take fairness in the achievement
of probably conflicting goals into account. The analysis of the Bot-
tleneck Flow Control (BFC) algorithm for congestion avoidance
in traffic networks will serve as a base to specify extensions of
relations among preference sets. In particular, these relations are
the lexicographic minimum, the maxmin fairness, and the newly
introduced ordered-ordered weighted averaging operator. All of
them are shown to become, in a relational sense, maximized by
the BFC algorithm. Their further expansion by introducing fuzzy
fusion operators in their formal definitions than establishes a
comprehensive sets of relations. The application of these relations
to the Multiple Relation Analysis (MRA) of subjective video
quality evaluation data is demonstrated and gives the conclusion
that also fairness criterions are present in such evaluations, at
least as a secondary preference criterion.

Keywords-fairness; maxmin fairness; ordered weighted aver-
aging operator; preference modelling; fuzzy information fusion

I. INTRODUCTION

Preference modelling, and the related preference prediction
have become research fields of increasing importance. This
tendency has been established by the wide-spread use of the
internet, social networks, and vendor systems, all of them
comprising systems that receive a strong impact from the user’s
attitude. So far, the focus of user preference modelling was on
either binary systems (“yes-no”, “like-neutral”) or numerical
evaluations given by the user (ratings, stars). However, recent
research is already focussing on the limitations of such a
point a view. For example, CP-nets were introduced as graph-
ical representations of conditional preferences [1]. Also older
works that were not considered for a long time newly came
under focus, as for example the Landau theorems on scoring
sequences (i.e. necessary and sufficient conditions for scoring
systems in a network context) [2]. In this work, we also want
to promote the point of view to represent preferences by means
of (set-theoretic) relations, in order to allow for a rich analysis
of various aspects of user decisions. In particular, the goal
is to extend the analysis to additionally represent (possibly
hidden) trade-offs that are inherent in user preferences, by a
formalization of the concept of user fairness. As a means for
such an analysis, a field was choosen were much progress
in the modelling of fairness was achieved for a long time,
i.e. the introduction of maxmin fairness in the field of data

communication [3]. By a rigorous analysis of one of the
fundamental algorithms in this field, the so-called Bottleneck
Flow Control (BFC) algorithm [4] for congestion avoidance in
traffic networks, we could find opportunities for the general-
ization of relations that are established by this algorithm. The
generalization of these relations can be successfully achieved
by employing concepts from fuzzy fusion. At the end of our
exposition, we will have a suite of formal relations at hand
that is capable to issue a Multiple Relation Analysis (MRA)
for general data analysis, also taking the attitude of users
towards unachievable goals into account. The MRA will be
demonstrated on a subjective video quality evaluation dataset.

This paper is organized as follows: the following Section II
will recall the BFC algorithm, and discuss the relevant aspects
of the state that is achieved at the end of this algorithm. These
characteristics of the algorithm will guide to the specification
of a suite of formal relations for MRA in Section III, and the
application of this suite to the video quality dataset will be
given in Section IV. The paper ends with a short conclusion
section.

II. FAIRNESS RELATIONS

In this section, we will focus on the formal representations
of fairness. In general, fairness, as a daily life concept, can
be understood in many ways and fashions. Problems with
global optimization easily lead to a motivation to also take
fairness into account [5][6]. We can find various attempts
to represent fairness in the past, but mostly there was no
notable progress. For example, in processor scheduling tasks,
often related to hard combinatorial optimization problems, the
concept of n-fairness was introduced, with the notion meaning
that in a processor regime, each processor should ensure that
the processor before can perform at least n tasks [7]. Also in
common means like credit granting, fairness can be used as an
indicator for a relevant assessment. Here, the criterion could
be that two customers that have the same evaluation criterions
should receive the grant with the same likelihood.

However, all such specifications do not guide to a formal
representation of fairness in such a way that it can be ef-
fectively used for the finding of suitable “fair” states. Here,
the best progress so far was achieved in the field of data
communications. Starting with the proposal of the Bottleneck

Flow Control (BFC) algorithm, an effective way of a fair
resource assessment was introduced, probably for the first time
[4].

A. The Bottleneck Flow Control Algorithm

We assume a traffic network congestion avoidance problem.
A network for carrying traffic is given as an un-directed graph
G with nodes N and links L. Also, a maximum capacity is
assigned to each link. Then, there are a number of users that
want to send traffic units through this network. Thus, also a
set of n triples (Πi, si, ri) of sender-receiver pairs and paths
connecting them is given, where si represents the sending
node, ri the receiver node for user ui. Paths Πi are given as a
sequence of joined links starting from si and ending at ri. We
also consider the union of all links li used by all paths, each
link with a multiplicity wi according to the number of paths
using the link li. Then the Bottleneck Flow Control algorithm
assigns traffic amounts ti to all users ui in the following way:

Bottleneck Flow Control

1) Set the remaining paths to the set of all paths. Set the
traffics ti for users ui along their corr. paths Πi to 0.

2) While the remaining paths set is not empty, perform the
following steps:

3) For all links li used by the remaining paths, get the
number wi of paths that pass through this link.

4) Find the links with minimum value of mi = ci/wi.
5) Add mi to the traffics for all users through the links with

minimal mi.
6) Remove the paths of all users of links, for which mi is

minimal, from the remaining paths.
7) Set new capacities of network links ci → ci −mi ∗ wi.

An example for the BFC algorithm is given in Fig. 1. It
shows a network with 7 nodes and links between these nodes
as indicated in the figure. It is assumed that the link connecting
nodes 3 and 4 has a maximum capacity of 200 units, and the
link connecting nodes 4 and 7 has a maximum capacity of 100
units. All other links will have some higher maximum capacity.
Three users wants to send traffic through this network: user 1
sends traffic t1 via the nodes 1, 3, 4 and 7; user 2 sends traffic
t2 via the nodes 2, 4 and 7; and user 3 sends traffic t3 via
5, 3, 4 and 6. It means that some users have to share links
for their traffic: users 1 and 3 share the link between nodes
3 and 4, and users 1 and 2 share the link between nodes 4
and 7. The BFC algorithm now will assign specific values for
the traffic amounts t1, t2 and t3, starting with amount 0, and
increasing equally for a subgroup of users. At the beginning
(Level 0) the amount will increase for all users. In some later
stage, for example at Level 20, the traffic amount assignment
of 20 (units) to all users is still feasible. However, at Level 50,
the link between nodes 4 and 7 has to transport a total traffic
of 100: 50 from user 1, and 50 from user 2. This gives a so-
called bottleneck. Any attempt to further increase the traffic for
either user 1 or user 2 will result in exceeding the maximum
capacity of this link. Thus, the BFC algorithm stops to further

user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

0 0

0 0
0

0
0

0

Level 0

user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

20 20

20 20
20

20
20

20

Level 20
user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

50 50

50 50
50

50
50

50

Level 50

user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

70 50

70 50
50

50
50

70

Level 70
user 1 user 2

user 3

cmax=200

cmax=100

1 2

3

4
5

6 7

150 50

150 50
50

50
50

150

Level 150

bottleneck

bottleneck

Fig. 1. Example for the Bottleneck Flow Control Algorithm: the algorithm
starts traffic assignments for users along given paths at level 0, and gradually
increases this level until bottlenecks are appearing. Then, the algorithm stops
the further increase for the affected users, but continues for the other users.
Thus, it is attained to assign the same traffic to subsets of users as long as
possible. This algorithm also utilizes the specific network in the best way.

increase the traffic amount for users 1 and 2, and fixes the
assignment t1 = 50 and t2 = 50.

However, user 3 is not affected by this bottleneck, since
her traffic is not using the link between nodes 4 and 7. So, the
BFC algorithm continues. Later on, for example at Level 70,
the traffic assignment t3 = 70 (while keeping t1 = t2 = 50)
is still feasible. This level increase will continue until Level
150. Now, the total traffic for the link between nodes 3 and
4 becomes 200: user 1 was fixed before at the level t1 = 50,
and t3 = 150 for user 3.

Any further increase of traffic is not possible, and the
BFC algorithm stops. Thus, the final traffic assignment is
t1 = 50, t2 = 50, t3 = 150. In the implementation of this
algorithm, of course, there are no increasing level sets, as the
values of bottlenecks can be directly inferred from the network
configuration and the values of maximum capacities.

It has to be noted that the BFC algorithm also specifies
the feasible space of traffic assignments. We can write the
result of the algorithm by a set of linear equalities (bottleneck
equations):

λ11t1 + · · ·+ λ1ntn = b1

λ21t1 + · · ·+ λ2ntn = b2 (1)
· · ·

λk1t1 + · · ·+ λkntn = bk

where all λij ∈ {0, 1}, ti is the traffic amount allocated to the
sender-receiver pair (si, ri) and k is the number of bottlenecks
found by the BFC algorithm, in the same order by which they
are found by the algorithm. It can also be seen that the ti can
be numbered (arranged) in such a way that the set of equations
fulfills the following properties:
• In row 1, all ti with λ1i = 1 are equal.
• In each row r > 1 there exists a “border” index ir such

that for all i < ir and λri = 1 in at least one row r1 < r
also λr1,i = 1, and for i ≥ ir, all ti are equal, larger
than any tj with j ≤ ir, and there is an index r2 ≤ r
such that λr1,i = 0 for all r1 < r2 and λr1,i = 1 for all
r2 ≤ r1 < r. This means that the traffics comprising a
particular bottleneck equation (their λ-values are 1) can
be divided into two groups: the first group contains only
traffic amounts already assigned by foregoing bottleneck
equations. Thus, in the progress of the algorithm, while
reaching another maximum capacity (bottleneck), the
remaining traffic amount at that bottleneck will be equally
shared among another new group of sender-receiver pairs.
These traffics then comprise the second group. Note that
the first group might be empty.

• If i > j then for the largest ki and kj from {1, . . . , n}
with λi,ki

= 1 and λj,kj
= 1 resp. it holds that tki

≥ tkj
.

This means the last elements in the equations are sorted
in non-decreasing order, according to the flow of the BFC
algorithm.

For clarity (we will need this structure of the bottleneck equa-
tions later on) here the bottleneck equations for the example
given above:

t1|=50 + t2|=50 = 100
t1|=50 + t3|=150 = 200

thus, for the second row the index i2 is 2: all traffics appearing
in the equation (i.e. their λ factor is 1 and not 0) with lower
index appear in at least one foregoing bottleneck equation
(here, t1 appears in the first equation and was fixed to 50),
and the remaining capacity of 200 − 50 = 150 at the second
bottleneck will be equally shared for the third traffic. Since
there is only one sender-receiver pair, its value will become
150.

Writing the bottleneck equations in such an index-ordered
way has the additional advantage that, after replacing each
equal sign in the Eqns. (1) with a lower-or-equal sign specifies
the feasible space of all possible traffic assignments.

After this analysis of the BFC algorithm, the question is
about the characterization of the final state achieved by the
algorithm. The BFC algorithm is effective in the sense that for

any given network structure, and given sender-receiver pairs, it
will uniquely assign traffic amounts to all sender-receiver pairs,
and thus select one and only one element of the feasible space.
How is this element be qualified against all other elements of
the feasible space?

In the following, we will recall two already known notations
of that final state, and provide another (up to our best knowl-
edge) new characteristic. Then, we will discuss the extension
of these characteristics into the fuzzy fusion domain.

B. Characterization of the BFC result

There are several ways to characterize the final state of the
BFC algorithm. Here, we will focus on three ways. In a less
formal way, the BFC algorithm can be seen as a prototype to
achieve fairness in the assignment of traffic amounts among
the various users (i.e. sender-receiver pairs) in such a network
model. The algorithm assigns the same traffic to all user as long
as possible. Then, when this increase is no longer possible, as
the assignment is reaching a bottleneck, it is no longer possible
to give a larger same amount to all users. But, in contrary to
other “equalizing” approaches to fairness, the BFC algorithm
does not stop here. It acknowledges the fact that a number of
users is not affected by this bottleneck, and continues to raise
their traffic amounts equally — until the next bottleneck is
reached.

From this argument, we can see the first characteristic of
the BFC algorithm.
(1) Lexmin relation. The lexmin relation is defined as a
relation between two points from Rn. Given two vectors x and
y from Rn, we consider the coordinates of both vectors sorted
in increasing order. It is said that x >lexmin y if and only
if the first coordinate of x, in that sorting, which is different
from y, is larger than the corresponding coordinate of y, in
that sorting. For simplicity, if the smallest coordinate of x is
larger than the smallest coordinate of y or if both are equal but
the second-smallest coordinate of x is larger than the second-
smallest coordinate of y etc. - than x is lexmin-related to y.

We also want to recall here that for any relation >R,
formally seen as a subset of A × A, where A is an arbitrary
but fixed set, we can define a maximum set and a best set: the
maximum set contains all elements x from A such that there
is no different y 6= x in A with y >R x. The best set, on the
other hand, contains all elements x of A such that for each
different y 6= x x >R y holds.

In this sense, the best set of the feasible space of a network
traffic assignment problem under the lexmin relation contains
exactly one element, and this is the one found by the BFC
algorithm. This can be seen from the index-ordered bottleneck
equations: the minimum traffic is given in the first of the
equations, and it cannot be increased. Then, for states with the
same minimum traffic, the second-smallest traffic will appear
in the second equation. Also this one cannot be increased
without exceeding the second bottleneck. The argument can be
continued for the third-smallest traffic, fourth-smallest traffic
etc.

(2) Maxmin fair dominance relation. It has already been
established [3][8] that the BFC algorithm is selecting the best
set element of another relation, the so-called maxmin fairness
dominance.

Definition 1. An element x of the feasible space is maxmin fair
dominating an element y of same space, if for each component
yi of y, which is larger than the corresponding component xi
of x there is another component xj of x which is (already)
smaller than or equal to xi and such that yj is smaller than
xj .

This can be directly seen from the index-ordered bottleneck
equations. If one traffic is increased, there will be a bottleneck
equation r where this traffic appears for the first time (and
there belonging to the second group, i.e. with index i ≥ ir,
using former convention). To maintain the bottleneck equation,
another traffic has to be decreased in order to compensate for
the increase (note that the compensation can be larger than
the increase). But each other traffic in this equation will be
the same (before increase) or smaller (if belonging to the first
group with indizes i < ir). So, any increase of a traffic amount
can only happen if some other traffic amount, which is already
the same or smaller, is decreased. This is exactly the definition
of the maxmin fair dominance relation. Note that maxmin fair
dominance relation and lexmin relation are different relations.

In the next subsection, we will introduce a generalization
of the maxmin fair dominance relation, based on using fuzzy
fusion operators. Here, we will already note that maxmin
fairness (referring to the quality of the best element of this
relation) has already found a number of alternatives in the
data network domain (where it was first introduced). The most
popular one is the so-called proportional fairness. It can be
defined as follows:

Definition 2. A point x of feasible space (a subset of R+
n) is

considered proportional fair dominating another feasible point
y, if and only if ∑

i=1,...,n

yi − xi
xi

≤ 0 (2)

holds.

The reason to introduce proportional fairness were a number
of problems with maxmin fairness, including the negligence
of user utility, and the overvaluation of the least element, for
example as it was noted by Kelly[9]: “The maxmin fairness
criterion gives an absolute priority to the smaller flows, in the
sense that if xs∗ < xs then no increase in xs, no matter how
large, can compensate for any decrease in xs∗ , no matter how
small.”

We can find the further extension of proportional fairness
to the so-called weighted alpha fairness dominance relation:

Definition 3. A point x of feasible space (a subset of R+
n)

is considered weighted alpha fair dominating another feasible
point y, if and only if for a given fixed set of weights wi∑

i=1,...,n

wi
yi − xi
xαi

≤ 0 (3)

holds.

It can be shown that for α → ∞ alpha-fairness nearly every-
where converges to maxmin fairness, but equals proportional
fairness for α = 1.
(3) Exponential OOWA. While the former two definitions
show how to use a relation between points in the feasible space,
and to characterize the BFC algorithm as the one that finds
the best element for each relation, the question comes up if
there is also a scalar function that is directly maximized by
the BFC algorithm. As a new result, we will show that there
is such a function. We define a special case of the ordered
weighted averaging (OWA) operator. As a reminder, the OWA
of a point x of Rn, given a weight vector w ∈ Rn, is defined
as

∑
wix(i). In this expression, x(i) indicates the i-th largest

element of all coordinates of x. We specialize the OWA by
also requiring the weights to be sorted in the opposite order.

Definition 4. Given a point x from Rn and a set of weights
w ∈ Rn, the Ordered-Ordered Weighted Averaging (OOWA)
of x by w is defined as

OOWAw(x) =
n∑
i=1

w(n−i+1)x(i) (4)

Thus, in the OOWA, the largest value is multiplied with the
smallest weight, the second-largest value with the second-
smallest weight etc. As a special case of the OOWA, we also
introduce the exponential OOWA. The additional requirement
here is

w(i) >

i−1∑
k=1

w(k) (5)

so that the weights itself are exponentially increasing. A
possible choice is wi = 2i for any n. Then it holds:

Theorem 1. The BFC algorithm is maximizing any exponen-
tial OOWA.

For an outline of the proof, see the Appendix.
Back to the example from the former subsection, and using

the weights (1, 2, 4) to compute

OOWAexp(t1, t2, t3) = t(1) + 2t(2) + 4t(3) (6)

we can see that any feasible modification of the ti will reduce
this expression for the state (50, 50, 150) assigned by the BFC
algorithm. This state has the exponential OOWA value 1·150+
2 · 50 + 4 · 50 = 450. If for example t2 is increased, this has
to be compensated by a decrease of t1. The increase can be at
most 50 due to the first bottleneck at 100, and t2 will always
become the second largest traffic, and the exponential OOWA
is changing to

f∗ = 1 · 150 + 2 · (50 + δ) + 4 · (50− δ1) (7)

where δ1 ≥ δ. This expression is clearly smaller than 450, as it
reduces the former value by at least 2δ. If t1 is increased, than

t2 and t3 have to be decreased, and the argument is basically
the same. An increase of t3 forces a decrease of t1. Since the
increased t3 will still be the largest value, and thus weighted
by 1, the smaller t1 now will be weighted by 2 or 4 (which
depends on a possible modification of t2). So, also here the net
change in the exponential OOWA expression will be negative.

The exponential condition is also necessary. It suffices to
consider a network structure, where one traffic shares links
with k other users, all of same maximum capacity and exactly
one other user per link to share, and the remaining n−k links
will have only one sending user, all with a lower maximum
capacity. Then, an increase of all the k sharing users will
require the one sharing user to compensate all k traffics. This,
its weight must be at least as large as the sum of the weights
of all other k increased traffics.

As a last comment, we may note that the exponential
condition is a result of link sharing. With regard to fairness,
single user sharing links with many other users at once can
be considered the worst case, as assigning any traffic to such
a user affects the traffic of many other users, in fact enforces
their reduction.

III. SUITE OF RELATIONS

In order to apply the concepts that were presented in
the foregoing section, we will have to study the unrevealed
relations independently from the BFC algorithm and the un-
derlying network traffic assignment problem. In fact, there are
a number of formal ways to expand these definitions, and they
will be discussed in the following.

A. Maxmin fairness and fuzzy fusion

The definition of maxmin fair dominance is rather complex.
However, its implementation can be much simplified [5]: in
general it would need to check the fairness condition for all
pairs of components, but for simplification, we define index
sets as follows (see Fig. 2). Given two vectors x and y we
want to test if x maxmin fair dominates y. Then, we compute
• A = {i |xi > yi}
• B = {i |xi = yi}
• C = {i |xi < yi}
• minA = mini∈A xi, or ∞ if A is empty
• minC = mini∈C xi, or ∞ if C is empty
The definition of maxmin fairness requires to check the

following for every increasing component xi: is there any j 6= i
such that xj ≤ xi and yj < xj? It means that i ∈ C and j ∈ A.
We omit the case that either A or C is empty at the moment.
Then, for such an index j to exist, it is necessary that for every
i ∈ C there is at least one element j of A with xj ≤ xi, in
particular it is necessary that there is a j ≤ minC and thus
minA ≤ minC . We can see that this is a sufficient condition as
well: for any i from C, already one j with xj = minA fulfills
the check: the j-th component (minA) is smaller than or equal
to any xi with i ∈ C, and xj > yj since j ∈ A. If we also
take formally z <∞ for any real z, we can evaluate maxmin
fair dominance as follows: Given two vectors x and y, then x
will maxmin fair dominate y if and only if minA ≤ minC .

...

A: xi > yi B: xi = yi C: xi < yi

minC

minA

Fig. 2. Maxmin fairness relation can be more easily defined, if we consider the
sets of components of x larger (set A) and smaller (set C) than corresponding
components of y. Vector x will maxmin fair dominate y if and only if the
smallest larger component of x is smaller than or equal to the smallest smaller
component of x [5]. In the figure, corresponding components of x and y
are placed on the same line, with height indicating their magnitude, and
the lines are re-arranged to show first x-components larger than the corr.
y-component, then equal components, and third smaller components (each of
the three sections are additionally arranged by increasing size of the corr.
x-component).

Note that equal components do not have any influence on
maxmin fair dominance, and that the definition includes Pareto
dominance. If C is empty, but A not, then each component of
x is larger than or equal to the corresponding component of
y, and at least one is larger.

From this way of testing the maxmin fair dominance
relation, we can see that the relation actually refers to a
fusion of all smaller and all larger components of a vector,
compared to another vector. The fusion used here is the
minimum operation. In this regard, we consider an extension
of the maxmin fair dominance by formally generalizing on the
fusion aspect. Thus, instead of comparing minA and minC
we use other means to fuse the information of the sets A and C
into single values. In present study, we will use other t-norms
(incl. Dubois Prade t-norm, and algebraic t-norm), and OWA
operators with different weights.

B. OOWA

Also the exponential OOWA that was shown to be maxi-
mized by the BFC algorithm offers some straightforward ex-
tensions, esp. by requiring a different law of weights increase.
Here, we will consider also a linear OOWA, where weight i
is choosen to be i.

Such operations will reflect sharing aspects. In the network
problem, the exponential increase of weights was necessary
in order to ensure that even the situation where one sender
shares links with ALL other users is covered. In the simple
scenario of no link sharing at all, a linear OOWA would be
sufficient to ensure maximization by BFC algorithm. Thus,
comparing linear and exponential OOWA in a situation, where
the interpretation of “link sharing” is not obvious, it can still
refer to a relevant problem of the studied feasible space -

technically, these expressions can be computed without any
reference to a networking problem at all.

C. Data processing suite of relations

With the modifications mentioned in the former subsections,
we propose a suite of relations that can be used together for a
Multiple Relation Analysis.
• Fuzzy fusion fairness relations fffop, where op indicates

the used fuzzy fusion operator. To decide for two points
x and y whether x >R y or not, we first compute the set
A of all components of x that are larger than the corr.
component of y, and the set C of all components of x
that are smaller than the corr. component of y. Then, if
A is not-empty, op is applied to A, giving a value fA,
and if C is not-empty, op is applied to the set C, giving
a value fC . If either of these sets is empty, the corr. f -
value is set to ∞. Then, x >R y if and only if fA ≤ fC .
More specifically, we will consider Dubois-Prade T-norm
for fusion (which is for two reals a and b from (0, 1) and
a parameter α defined as ab/max[a, b, α], and for more
than two arguments by associativity of the expression for
two arguments), the “simple” algebraic t-norm as product
of components, and several OWA operators, with larger
weights for smaller values, or nearly equal weights, thus
focussing on averaging. Also, plain average of the sets A
and C will be considered.

• Other fairness relations, as introduced in subsection
II-B(2): proportional fair dominance, and alpha fair dom-
inance with various values of α.

• Exponential OOWA, as introduced in section II-B(3),
the variant linear OOWA as discussed in the foregoing
subsection, and in this context also the lexmin relation.

• Other general relations that are not primarily related to
the concept of fairness: more than half of the components
of x is larger than the corresponding components of y;
the largest component of x is larger than the largest
component of y; and the average of the components of x
is larger than the average of the components of y in order
to x be in relation to y.

• We also consider Pareto dominance relation with regard
to maximization and minimization. For maximization, x
is larger than (or: in relation to) y iff all components of x
are larger or equal to the corresponding components of y,
and at least one component is larger (minimization Pareto
dominance is defined accordingly).

D. Mathematical properties

For space reasons, we will not provide a thorough analysis
of the mathematical properties of the introduced relations. Here
we only mention that the introduced fuzzy fusion fairness
relations are all not complete (i.e. it is possible that for some x
and y neither x >R y nor y >R x holds) and not (always) tran-
sitive. For example, for the maxmin fair dominance relation,
consider the tripel of vectors x = (70, 50), y = (40, 40), z =
(30, 60). Here x maxmin fair dominates y, and y maxmin
fair dominates z but x does not maxmin fair dominate z.

Nevertheless, the relations will not produce conflicts, as from
x >R y and y >R z always z >R x can be excluded. On
the other hand, the lexmin relation as well as the OOWA are
complete and transitive.

IV. EXPERIMENTAL VALIDATION: SUBJECTIVE
EVALUATION OF VIDEO QUALITY

A. Used data and recent findings

For the application of the relations, we are considering a
dataset of subjective evaluations of video data quality. The
dataset contains two kinds of information for 1139 sample
videos: five objective measures of video quality, in particu-
lar values numerically representing overall noise, degradation
caused by block distortion, degradation associated with blur-
ring, local spatial degradation, and freeze degradation, and an
average ranking of a number of users for each of these 5-tuples
of data. The dataset is part of a larger experiment performed
at NTT Corp.1

The data have already been analyzed in a recent
publication[10]. There, the goal was to use a newly-proposed
fuzzy integral, the inclusion-exclusion integral, to derive the
user ranking from the quality measures by direct computation.
The approach was shown to improve the recommended rule by
the Telecommunication Standardization Sector of International
Telecommunication Union (ITU-T), and an approach based on
the Choquet integral as well. It was also confirmed that the
5-th quality measure shows a logarithmic utility for the user,
while the other four correspond directly to the user utility.

B. Data Pre-Processing

Here, we are interested in specifying the user attitude
towards increase or decrease of the quality measures in total.
While it can be expected that video material with lower degra-
dation measures will be more likely higher ranked, the question
that can be handled by the introduced fairness relations is also
about the acceptance of trade-offs by the user. So, the question
for the analysis is if an increase in quality according to one
criterion is less favored, if the cost for this increase is the
decrease of another criterion, which is already lower in quality.

For this processing, we have to represent the quality values
by their utility. Also we have to consider that the introduced re-
lations are focussing on increasing magnitudes of components.
Thus, the following pre-processing of the data was performed:

1) Data sets containing unsafe measurements (about 20)
were removed.

2) All 5-th measurements xi5 were replaced by the decimal
logarithm log10 xi5.

3) All datasets were normalized by their average and stan-
dard deviation (µj is the average of the j-measurement,
and σj the corresponding standard deviation):

xij ←
xij − µj

2σj
(8)

4) Datasets with strong outliers were removed (about 200),
as we are more focussing on the average behaviour.

1The dataset itself is not publicly available.

5) The single data were rescaled to the (0, 1) range, such
that larger values represent better quality:

xij ← 1− xij + 1
2

(9)

After preprocessing, the frequency correlation for each
proposed relation was computed. Thus, we are considering
the normalized measurements for each possible pair (x, y) of
datasets in two ways:

• Precision: in case that x is in relation to y, we are counting
how often then also sx > sy holds, i.e. how often the
users also ranked the video higher.

• Recall: in case that sx > sy , we count how often this is
indication for the relation x >R y to hold as well.

In the processing, equal pairs of values were ignored. It was
also noted how often the relation was actually occurring. The
total number of pairs used in the comparison for each relation
was 938961.

C. Results and Discussion

The result for all used relations can be seen in Table I.
We describe the main properties of the result by the

following items, see also Fig. 3.

• Most of the relations achieve precision and recall mea-
sures between 0.1 and 0.8. The largest precision value is
achieved by the Pareto dominance (maximizing), but it is
accompanied by a low recall value. This indicates that an
improvement in ALL measures usually also results in a
higher rating of the videos, but that it is not required
from the user perspective. The low measures for the
Pareto dominance minimizing strengthen this conclusion:
a higher rating of a video with all lower quality measures
is highly unlikely. Note the small number of occurrences
of the Pareto dominance relation as well.

• We find the fuzzy fusion fairness relations located in the
lower right part of the precision-recall plot, in an area
with the maxmin fair dominance relation (as a special
case of fuzzy fusion fairness) in its center. This indicates
that these relations are focussing on related aspects of user
preferences. Remember that these relations are focussing
on the modality of accepting a decrease in some quality
measures for the benefit of increasing other measures. In
a fair state, the decrease should not happen to quality
measures that are already lower. The rather low recall
values indicates that the user is not considering this
a primary criterion, and is more focussing on general
improvements. Nevertheless, the recall values can become
rather large, esp. when the algebraic t-norm is used for
fuzzy fusion. This is a relevant issue, as most t-norms
have the tendency to depend (in their numerical range)
strongly from the number of arguments, and this effect is
most extreme for the product. It can also be seen from
the tendency of the Dubois-Prade t-norm to provide larger
recall values with increasing α parameter. It is known that
this parameter smoothly transits the operation result from

the minimum (α→ 0) to the product of its arguments for
α→ 1.

• We can find OOWA and lexmin rather close together, and
with comparable large precision and recall values. Espe-
cially, there is the same result for exponential and linear
OOWA. Recalling the discussion of the introduction of
these operators, and their motivation from the maximizing
property of the BFC algorithm, this is an indication that
there is no strong “sharing” between the quality measures.
It means that the increase of a quality measure can be
gracefully done without the need to decrease other quality
measures. On the other hand, lexmin can also be seen as
an OOWA with weights converging to infinity, and the
results are rather similar, just a little bit smaller.

• Averaging relations in general do perform less well,
compared to other relations. Especially for the fuzzy
fusion fairness with nearly equal OWA weights it gives
the lowest precision and recall values (except Pareto
minimum). Also the largest component alone is not much
indicative for the user rating.

• The default suite of relations, esp. the number of larger
components relation, confirms the findings from the other
relations: the number of larger quality measures can be
seen as the primary criterion for the user rating, and the
corr. trade-off as secondary criterion. But it seems in this
trade-off the user is not much considering the choice of
which of the other measures is actually decreased.

Largest component

Pareto min.
Pareto max.

proportional fairness

fuzzy fusion fairness

OOWA, lexmin

maxmin fairness

alpha fairness

average

Fig. 3. Precision vs. Recall for the used relations.

V. CONCLUSIONS

We have provided formal representations for user prefer-
ences, also taking fairness among the achievement of probably
conflicting goals into account. Their further expansion by intro-
ducing fuzzy fusion operators in their formal definitions than
established a comprehensive set of relations. The application
of these relations for a Multiple Relation Analysis (MRA)
for the analysis of subjective video quality evaluation data is
demonstrated and gives the conclusion that also fairness crite-
rions are present in such evaluations, at least as a secondary
preference criterion. Further work will have to focus on the

TABLE I
PRECISION AND RECALL FOR VARIOUS RELATION-BASED EVALUATIONS.

Relation Parameter Number of related pairs Total ratio Precision Recall

maxMinFairness = fffmin - 159024 0.110257 0.651015 0.223613
fffowa w = (0.8, 0.2, 0, 0, 0) 130073 0.0863007 0.622981 0.175027
fffowa w = (0.6, 0.3, 0.1, 0, 0) 123956 0.0675385 0.511601 0.136976
fffowa w = (0.3, 0.2, 0.2, 0.2, 0.1) 242104 0.0875755 0.339647 0.177613

fffdubois−prade α = 0.2 159010 0.110258 0.651078 0.223616
fffdubois−prade α = 0.5 156492 0.109369 0.656219 0.221812
fffdubois−prade α = 0.8 183208 0.140454 0.719843 0.284857

fffalgebraic - 222989 0.174354 0.734171 0.35361
fffaverage - 111732 0.0702915 0.590708 0.142559

proportional fairness - 265724 0.197693 0.698567 0.400943
alpha fairness alpha=3 186517 0.136353 0.686425 0.276539
alpha fairness alpha=7 164952 0.117707 0.670025 0.238722
alpha fairness alpha=10 161627 0.114446 0.664864 0.232109

exp. OOWA - 468996 0.325803 0.652278 0.660764
lin. OOWA - 468996 0.325803 0.652278 0.660764

lexmin - 468996 0.308115 0.616867 0.624892

Pareto dominance (maximizing) - 20341 0.0182233 0.841207 0.036959
Pareto dominance (minimizing) - 20341 0.00316414 0.14606 0.00641722
number of larger components - 401481 0.304671 0.712547 0.617906

largest component - 426865 0.237688 0.522835 0.482058
average - 468996 0.332448 0.665583 0.674242

more elaborate analysis of mathematical properties of these
relations, and their employment in other domains, especially
preference prediction.

ACKNOWLEDGMENT

This work was partly supported by the Japan Society for
the Promotion of Science, Grant-in-Aid for Scientific Research
(S) (No. 18100001).

REFERENCES

[1] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and
D. Poole, “Preference-based constrained optimization with cp-nets,”
Computational Intelligence, vol. 20, no. 2, pp. 137–157, 2004. [Online].
Available: http://dx.doi.org/10.1111/j.0824-7935.2004.00234.x

[2] H. Landau, “On dominance relations and the structure of animal soci-
eties: III the condition for a score structure,” Bulletin of Mathematical
Biology, vol. 15, pp. 143–148, 1953, 10.1007/BF02476378. [Online].
Available: http://dx.doi.org/10.1007/BF02476378

[3] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, N:
Prentice Hall, 1992.

[4] J. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. COM-29,
July 1981.

[5] M. Koeppen, K. Yoshida, and M. Tsuru, “Fuzzification of maxmin
fairness relation based on subvector dominance degree,” in Proc. 2nd
International Conference on Intelligent Networking and Collaborative
Systems (INCoS 2010), Thessaloniki, Greece, November 2010.

[6] M. Koeppen, R. Verschae, K. Yoshida, and M. Tsuru, “Heuristic
maxmin fairness for the wireless channel allocation problem,” in Proc.
Fifth International Conference on Broadband and Wireless Computing,
Communication and Applications (BWCCA 2010), Nov. 2010, Fukuoka,
Japan, 2010.

[7] S. Haldar and D. K. Subramanian, “Fairness in processor scheduling in
time sharing systems,” SIGOPS Oper. Syst. Rev., vol. 25, no. 1, pp. 4–18,
1991.

[8] M. Koeppen, K. Yoshida, M. Tsuru, and Y. Oie, “Evolutionary routing-
path selection in congested communication networks,” in Proceedings
of the 2009 IEEE International Conference on Systems, Man, and
Cybernetics, San Antonio, TX, USA - October 2009, 2009, pp. 2224–
2229.

[9] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecomm., vol. 8, pp. 33–37, Jan./Feb. 1997.

[10] A. Honda and J. Okamoto, “Inclusion-exclusion integral and its appli-
cation to subjective video quality estimation,” in Information Processing
and Management of Uncertainty in Knowledge-Based Systems. Theory
and Methods - 13th International Conference, IPMU 2010, Dortmund,
Germany, June 28 - July 2, 2010. Proceedings, Part I, E. Hüllermeier,
R. Kruse, and F. Hoffmann, Eds., 2010, pp. 480–489.

APPENDIX

Outline of the proof for Theorem 1
The following lemma indicates a minimizing property of

the OOWA against all OWA using the same set of weights:

Lemma 1. Given a set of n weights w in non-decreasing order,
and any permutation w∗ of these weights. Then for any x ∈ Rn

OOWAw(x) ≤ OWAw∗(x) (10)

Proof: We will use bracketed subscripts to refer to the
different orderings. By x(i) we indicate the i-th largest element
of x, by w(i∗) the i-th element in the permutation w∗ of the
weights. We also define hi = x(n−i+1) − x(n−i+2) for i > 1
and h1 = x(n). Then, x(i) =

∑n−i+1
k=1 hk and it follows:

OWAw∗(x) =
n∑
i=1

[
w(i∗)

n−i+1∑
k=1

hk

]

=
n∑
i=1

[
hi

n−i+1∑
k=1

w(k∗)

]
≥

n∑
i=1

[
hi

n−i+1∑
k=1

wk

]

=
n∑
i=1

[
wi

n−i+1∑
k=1

hk

]
= OOWAw(x)

since the weights are sorted in non-decreasing order and thus,
the sum of the first k weights will be always smaller or equal
to the sum of the first k permuted weights.
We indicate the assignment T ∗ of traffics achieved by the BFC
algorithm with a star t∗i . Now we have to consider any other
feasible assignment T of ti traffic values to users. By T+ we
indicate the set of traffics that become larger in T and by
T− the set of values that become smaller (if needed, arrange
the traffic indices such that for equal t∗ values, T+ traffics
appear before T− traffics). We consider a bipartite directed
graph with nodes set (T+, T−) constructed as follows: each
node represents a traffic that was modified when changing from
T ∗ to T and keeps two values: the change δ and the weight of
the traffic in the original order O. A directed link goes from a
node t1 in the “right” set of the T−-nodes to a node t2 in the
“left” set of the T+-nodes if t1 appears in the same bottleneck
equation(s), where t2 appears for the first time. Thus, we use
a link to indicate that a reduced traffic can compensate for an
increase in traffic in the same bottleneck equation.

Now we generate the following sum S: for each link, we
multiply the weight of the incident node (i.e. for an increased
traffic) and the δ-value of the outgoing node (i.e. of a decreased
traffic) and sum up all products for all links. Then, from the
condition for the weight increase of the exponential OOWA
we can see that ∑

i,ti∈T−
δiwi > S (11)

since each node on the right side is at most connected to (k−1)
nodes to the left, where k is the index of its weight, and all
links will have a different weight factor in S with smaller
weight index. On the other hand

S ≥
∑

i,ti∈T+

δiwi (12)

since S contains, for each increasing node, the compensating
terms in the same bottleneck equation (the δ-values of decreas-
ing traffics, to which it is connected) with the same weight
as the increase appears in the modified oowa∗ expression.
Thus, by this modification, the original OOWA expression
becomes smaller. By Lemma 1, after re-arranging the weights
into the correct order, the value will not increase. Thus, the
total OOWA expression becomes smaller.

For assisting these arguments, figure 4 gives an example.
Assuming a setup with the following bottleneck equations as
a result T ∗ of the BFC algorithm:

t3
δ=40

w3

t4
δ=50

w2

t5
δ=30

w1

t1
δ=40

w5

t2
δ=40

w4

w3 w2

w2

w1

w1

Fig. 4. Example for the bi-graph used in the proof.

t1|=50 + t2|=50 = 100
t2|=50 + t3|=60 = 110

t1|=50 + t2|=50 + t4|=70 + t5|=70 = 240

Then, we assume a change to another feasible state T as
follows: t1 = 10, t2 = 10, t3 = 100, t4 = 120, t5 = 100.

The set T+ contains the elements t3, t4 and t5, and the
set T− the two elements t1 and t2. The directed links are
as shown in the figure, for example, node t2 is connected to
node t5, since t5 appears the first time in the 3rd bottleneck
equation, and t2 as element of T− appears also in the same
bottleneck equation.

Now there are five links and the value of S is computed as
follows:

40 · w1 + 40 · w1 + 40 · w2 + 40 · w2 + 40 · w3 (13)

and from w4 > w1 +w2 +w3 and w5 > w1 +w2 +w3 +w4 >
w1 + w2 it can be seen that the weighted sum for the right
nodes exceeds S: 40 · w4 + 40 · w5 > S.

For the left nodes, we can see that S contains all terms
needed to compensate the weighted sum of all T+ changes as
well:
• For t3, which increases the oowa∗ value by 40w3, S

contains the (necessary) compensation of the increase in
the second bottleneck equation from node t2 (40w3).

• For t4, which increases the oowa∗ value by 50w2, S
contains a compensation from decreasing t1 by 40 and
t2 by 40, both weighted by w2 in S.

• For t5 with increase 30w1, the connecting links from
t1 and t2 provide a compensation for the increase by a
decrease of 40 and are weighted with w1 in S.

So it can be seen that the sum of all changes for T+ nodes
(smaller or equal to S) increases the original OOWA by a
smaller amount than the sum of all changes for T− nodes
(larger than S).

