
11
A framework for
the adaptation of
image operators

Mario Köppen and Raul Vicente-Garcia

11.1. Introduction

The automated tuning of image processing operations is an important task for
the improvement of the robustness, reliability, and versatility of image process-
ing systems. Nearly every approach in this field is based on the classical image
processing chain (IPC), which consists of a sequence of single image processing
operations steps that are designed independently. Mostly notable steps here are
the image acquisition, the computation of features and their classification. Other
steps that might extend the processing chain are image enhancement, region-of-
interest specification or image segmentation before feature computation, feature
selection or feature transformation before classification, and semantic processing
of images classes or object detection following the classification. Among many
textbooks about this field, see especially [15] for an excellent introduction and
motivation.

The versatility of the IPC scheme is usually achieved by means of a train-
ing procedure (see Figure 11.1). Given a training set (either labeled data supplied
by the user, or unlabeled ones in the so-called unsupervised learning mode), the
training scheme may modify some of the internal settings of the steps in the IPC in
order to achieve the best mapping function from images to classes. A remarkable
issue here is that the single steps in the processing flow consider their input usually
as immutable: the feature computation does not modify the image acquisition pro-
cedure, the classification does not influence the manner in which the features were
computed. The training overcomes this drawback by being given some influence
on these settings, like modification of some parameters of the feature computa-
tion, or modification of internal parameters of the classification. However, from
the fact that each step was designed independently, it follows that training can
always be broken into parts, which tune a single step only.

From this description, the most important drawback of the IPC approach be-
comes obvious: the IPC as a whole cannot perform better than its worst configured
part.



216 A framework for the adaptation of image operators

Training

Training data

Feature computationImage acquisition Classification

Image Features Class

Figure 11.1. Typical processing flow for the training of an image processing system.

However, another problem with the IPC approach is not that obvious: each
free parameter of an IPC gives an additional dimension of the search space of
the optimization problem that corresponds to the training. Thus, the search space
seems to become quite large. However, a simple quantitative investigation of the
case gives, that the search space, if given in terms of the represented image (and
not the IPC free parameters) is apparently greater, since it is given by a mapping.
The number of possible mappings of n variables with m possible values onto k
values is k(mn). In fact, the percentage of possible image processing operations that
can be represented by an IPC with respect to the total number of all possible image
processing operations is nearly zero, even if the domain of the latter ones is highly
restricted.

When soft computing techniques like genetic algorithms, genetic program-
ming or neural networks are to be applied to the design of image processing oper-
ations, the question of how image processing operations can be adequately repre-
sented for this purpose becomes very important.

The evolutionarily designed primary visual system of higher mammals gives
an important hint on this issue. Here, for example, the model of the Boundary
Contour System/Feature Contour System [5] introduced two independent path-
ways in the cortical processing of (at least) static images, which are perceived by
the retina and cortical cells.

The point of interest in the context mentioned afore is the use of several path-
ways instead of a single one (i.e., an IPC). Within the final fusion of the processing
results of each pathway, a mapping can be included, which dramatically increases
the number of representable operations. If the mapping can be specified indepen-
dently, it can be expected that the task of image processing operation tuning can
be solved much more effectively.

Once having the general idea of such n-dimensional frameworks, the main
body of this chapter is considering a realization of such a framework. It comes out
that a basic generic algorithm, originating in the image processing discipline of



M. Köppen and R. Vicente-Garcia 217

mathematical morphology, the so-called 2D lookup, provides all that is needed to
design such a framework.

For adapting the framework to the solution of a given image processing task,
genetic programming (GP) will be used. The task here is to evolve the operations
(“pathways”) that give the input for the mapping in the framework. Using GP for
adapting the IPC has been studied a few times in the past. The seminal work of
Tackett [20] used GP to derive efficient feature computations, and the applica-
tion was the recognition of targets. Harris and Buxton proposed the use of GP
for deriving edge detectors in 1D signals [6], while Poli studied the more general
use of GP in several image processing tasks like image enhancement, image filter-
ing, and feature classification [14]. A specialization to the detection of objects or
regions-of-interest was presented by Bhanu and Lin [2, 3]. All these approaches
followed the general idea to synthesize more complex operators from simple ones
and showed the efficiency of such approaches. Using rules instead was considered
by Stanhope and Daida in [18]. A recent work by Lam and Ciesielski introduced
the computation of translation invariant features that are evolved by GP and eval-
uated by a clustering procedure [12].

The motivation to use a 2D-Lookup algorithm as internal mapping in an IPC
was firstly inspired by the successful application of a 2D-Lookup for the segmen-
tation of background texture in images of bank checks [4]. Later on, a refined
version was presented by Köppen et al. in [8, 9]. The application of the presented
framework to an industrial collagen-sheet inspection system can be found in [13],
and its application to texture detection (with the intention to select appropriate
image region for digital watermarking) can be found in [7].

In this contribution, the 2D frameworks based on this general idea and means
for its extension will be presented. In Section 11.2 the concept of an n-dimensional
framework will be presented and discussed, followed by Section 11.3 that intro-
duces the 2D-Lookup algorithm for realizing such a framework. Details of the
framework are presented in Section 11.4, and the possible extensions are discussed
in Section 11.5. After the provision of some results for the application of the frame-
work in Section 11.6, the chapter concludes with a short summary and the refer-
ence.

11.2. Multidimensional frameworks

In this section, a rough estimation should be made about the dimensionalities of
the search problem involved in an optimization approach to IPC configuration.
The basic assumption is that the result of the IPC should resemble a given goal
image as good as possible, or that some properties are fulfilled by the result image.
From this, the configuration of an IPC comes out to be an optimization problem.

Consider Figure 11.2, where a simple unit IPC is given. It is assumed that
the computations are restricted within a 3 × 3 neighborhood at each pixel. All
grayvalues at image pixel locations are assumed to be values between 0 and 255.
The result of the operation should be a binary one, that is, the computations give
a value of either 0 or 1. Then, such a unit IPC can be considered as a mapping



218 A framework for the adaptation of image operators

Operation 0/1

0 . . . 255

Figure 11.2. The unit IPC which maps nine grayvalues onto two.

f : {0, . . . , 255}9 → {0, 1} from nine grayvalues onto the set of binary values {0, 1}.
If there is a quality function q that assigns a quality value to each mapping f , a
mapping fopt is searched, for which its quality value becomes optimal. However,
since for the mapping f there are 2569 function values to specify, each of which
can either be 0 or 1, there are 2(2569) possible mappings for the unit IPC. This is the
number of elements of the search space, too.

As an example, consider the class of convolution operations. A weighted mask
is given by the mapping of an index set M (the mask) into the set of weights, like

Mw =
w(−1,−1) w(0,−1) w(1,−1)

w(−1,0) w(0,0) w(1,0)

w(−1,1) w(0,1) w(1,1)

(11.1)

and assuming here that wij ∈ {0, . . . , 255}. Then, convolving the image I at posi-
tion (x, y) with the weighted mask Mw can be written as

R(x, y) =
∑

(i, j)∈M
w(i, j)I(x + i, y + j). (11.2)

By thresholding the result with a value ϑ, a binary image is obtained. For this
unit IPC with nine parameters, there are 2569 possible choices for the parame-
ters. Compared with the number of search space elements 2(2569), this is only a
marginal amount of representable operations. The number p of parameters with
a domain {0, . . . , 255} that would be needed to cover the search space completely
is 2569/8. This follows from equating 2(2569) = 256p = 28p.

A serious problem arises from this consideration. If adaptive techniques like
soft computing methods should be applied to such an image processing problem,
the search space is much too big to be covered by the search method. There seems
to be no way to represent an arbitrary mapping of the kind of mappings used in
image processing operations.

The number of represented operations could be dramatically increased, if a
mapping would be involved into the IPC operations. This leads to the definition



M. Köppen and R. Vicente-Garcia 219

Operations

0/1 0/1

Fusion

op1

op2

op3

opn

Figure 11.3. An n-dimensional framework, which decomposes an IPC into n operations performed in
parallel and a final fusion of the operation results. The fusion can be based on a mapping, thus heavily
increasing the number of representable operations.

of n-dimensional frameworks. An n-dimensional framework is a decomposition
of the processing flow into n parallel parts op1 to opn and a final fusion procedure
(see Figure 11.3). Each single operation is applied onto the original image, and
then, the n result images are fused by an appropriate algorithm. If the fusion is
specified by a mapping of n values out of a set of m values each onto the set {0, 1},
the framework, as seen from the “outside,” serves as a unit IPC of the kind given
above. There are 2(mn) mappings specified. If m is set to 256 and n to 9, we exactly
meet the requirements of the unit IPC.

This is the key idea of n-dimensional frameworks: they allow for its adaptation
as a whole by adapting the parameters of n operations (each of which could be an
IPC itself), thereby sampling the search space to a much more larger degree as can
be achieved by setitngs a number of internal parameters only.

The question is, of course, if there is a fusion algorithm that really supports the
adaptation of image processing operators. The answer is positive, and in the next
section, the 2D-Lookup algorithm will be identified as such a fusion procedure.

11.3. 2D-Lookup algorithm

The 2D-Lookup algorithm stems from mathematical morphology [16, 17]. It was
primarily intended for the segmentation of color images. However, the algorithm
can be generalized for using on grayvalue images as well.

For applying the 2D-Lookup algorithm, two input images g1 and g2 of same
size and number of bits per pixel are required. These two images can be the result
of applying two image operators onto a single input image, or by extracting color
channels from a color representation of an input image. The nature of the image
operators or channel selections itself does not matter for the application of the 2D
lookup. The other component of the algorithm is a matrix of dimension Ng × Ng

(with Ng being the number of different grayvalues in the two input images) and
having entries from a set of labels, with preference to the same grayvalue range as
the input images.



220 A framework for the adaptation of image operators

for x=0 to img width-1 do
begin

for y=0 to img height-1 do
begin

g1 = g1(x, y)
g2 = g2(x, y)
out (x, y) = l (g1, g2)

end y
end x

Algorithm 11.1

The 2D-Lookup algorithm goes over all common positions of the two-opera-
tion images. For each position, the two pixel values at this position in the images
g1 and g2 are used as indices for looking up the 2D-Lookup matrix. The matrix
element, which is found there, is used as pixel value for this position of the result
image. If the matrix is bi-valued, the resulting image is a binary image.

Let I1 and I2 be two grayvalue images, defined by their image functions g1 and
g2 over their common domain P ⊆ N ×N :

g1 : P �→ {0, . . . , gmax
}
,

g2 : P �→ {0, . . . , gmax
}
.

(11.3)

The 2D-Lookup matrix is also given as an image function l, but its domain is
not the set of all image positions but the set of tupels of possible grayvalue pairs
{0, . . . , gmax} × {0, . . . , gmax},

l :
{
0, . . . , gmax

}× {0, . . . , gmax
}
�→ S ⊆ {0, . . . , gmax

}
. (11.4)

Then, the resulting image function is given by

r : P �→ S,

r(x, y) = l
(
g1(x, y), g2(x, y)

)
.

(11.5)

In standard applications, every grayvalue is coded by eight bit, resulting in a max-
imum grayvalue of 255. Also, the domain of the image function is a rectangle. In
this case, the 2D-Lookup is performed by the pseudocode shown in Algorithm
11.1.

To give a simple example for the 2D-Lookup procedure, gmax = 3 is assumed
in the following. Let

g1 :
0 1 2
0 3 3

, g2 :
2 3 1
2 3 2

(11.6)



M. Köppen and R. Vicente-Garcia 221

be the two input images and let the 2D-Lookup matrix be given by

l :

g1
g2 0 1 2 3

0 0 0 1 1
1 0 1 2 2
2 1 2 3 3
3 2 3 3 2

(11.7)

Then, the resulting image is

r :
l(0, 2) l(1, 3) l(2, 1)

l(0, 2) l(3, 3) l(3, 2)
= 1 3 2

1 2 3
(11.8)

In the following, the 2D-Lookup matrix will only contain the two entries: Black
(0) and White (1).

A typical base for the matrix can be the so-called 2D histogram. Using the
former notation, the 2D histogram of two images g1 and g2 is a mapping

H
(
ga, gb

) = ∑
(x,y)∈P

δ
(
g1(x, y), ga

)
δ
(
g2(x, y), gb

)
(11.9)

with δ(a, b) being 1 for a = b and 0 otherwise. The entry of H at position of a
grayvalue pair (ga, gb) contains the number of pixel positions (x, y) where image
g1 has grayvalue ga and image g2 has grayvalue gb. Using a normalization factor
(like the maximum value in H), the 2D histogram can be given as an image and
used as a 2D-Lookup matrix.

Figure 11.4 illustrates the relations between 2D histogram and 2D lookup by
means of the Lena image. The subimage to the middle right is the 2D histogram
of the Lena image that was obtained from the red and green channels of the Lena
image (taken as grayvalue images). There are some obvious clusters in this his-
togram that give rise to a labeling as shown in the figure. The five binary images
were obtained by using a 2D-Lookup matrix image each, having all positions of the
segment number i set to black, and white otherwise. So, it can be seen that the bi-
nary image generated by setting all points of label 3 to black (lower-left subimage)
basically covers the mirror structure in the image background. Since the projec-
tion of label 3 into both axis directions of the label image is crossing label 2, it is
not possible to extract this mirror structure from the red or green channel image
of the Lena image alone. More precisely: if one tries to extract the grayvalue range
spanned by the positions of the mirror structure, in either case (red or green) also



222 A framework for the adaptation of image operators

Red channel

G
re

en
ch

an
n
el

0 255

255

1

2

3

4
5 2D histogram

Figure 11.4. Various segmentations of Lena image based on labeling of the 2D histogram of red and
green channels.

some other structures are always selected as well that do not belong to the mirror
structure. The projections of the 2D histogram gives a clear indication for this. The
2D-Lookup algorithm is able to separate the mirror structure directly. From this
simple example, the potential of the 2D-Lookup algorithm for segmentation tasks
can be seen.

11.4. 2D-Lookup-based framework

The 2D-Lookup-based framework (see Figure 11.5) is composed of (user-given)
original image, filter generator, operation images 1 and 2, result image, (user-
supplied) goal image, 2D-Lookup matrix, comparing unit, and filter generation
signal.

The framework can be thought of as being composed of three (overlapping)
layers.

(1) The instruction layer, which consists of the user-supplied parts of the
framework: original image and goal image.

(2) The algorithm layer performs the actual 2D-Lookup, once all of its com-
ponents (original image, operation 1, operation 2, and 2D-Lookup ma-
trix) are given.

(3) The adaptation layer contains all adaptable components of the frame-
work (operation 1, operation 2, 2D-Lookup matrix) and additional
components for performing the adaptation (comparison unit, filter gen-
erator).



M. Köppen and R. Vicente-Garcia 223

Filter generator Original image

2D-lookup matrix

Filter generation signal

Operation 1 Operation 2

Result imageGoal image

Comparison Fitness

Chromosome

Figure 11.5. 2D-Lookup-based framework: overview.

For the instruction layer, the user interface has been designed as simple as possi-
ble. The user instructs the framework by manually drawing a (binary) goal image
that provides the wanted segmentation of the original image into foreground and
background. In this image, all pixels of the background segment are set to White
and all pixels of the foreground (e.g., the location of a texture fault, or the hand-
writing on a textured bankcheck background) are set to Black. No special texture
model has to be known by the user. There are no further requirements for the goal
image.

For making the framework the subject of an evolutionary adaptation, several
aspects have to be considered in more detail.

(1) Fitness function: assuming the operation images and the 2D-Lookup
matrix to be given, the result of 2D lookup has to be compared with the
user-supplied binary goal image (indicated as “comparison” in Figure
11.5). This is achieved by a fitness function that measures the degree of
spatial correspondence between two binary images.

(2) Derivation of 2D-Lookup matrix: once the two-operation images are
known, it can be expected that the 2D-Lookup matrix can be adapted in
order to give the best fitness to the goal image as result of the 2D lookup.
Later on (see Section 11.4.2) we will provide exactly such a procedure,
making the 2D-Lookup matrix a function of the operation images 1 and
2 and the goal image alone, and without the need of any further adapta-
tion.

(3) Having the fitness function and the method to derive the 2D-Lookup
matrix, it only remains to specify the two-operation images. Here, the
task can be handled by an evolutionary procedure. In summary, we de-
cided to use the representation of operations as expression trees, and us-
ing genetic programming in order to derive optimal image operations.



224 A framework for the adaptation of image operators

Reference

Pattern

A

B

C

CountBlack
MatchBlack
RefBlack

Figure 11.6. Terms for fitness evaluation.

In the following sections, these necessary specifications of the framework will
be presented.

11.4.1. Fitness function

In order to compare the output image of the 2D Lookup with the goal image,
a quality function has to be designed for the comparison of two binary images.
First, the definition of this fitness function will be given, then it will be discussed.

Consider Figure 11.6, where two sets are shown, the reference set of the goal
image and the pattern set of the result image. The reference set of the goal image
is the set of all black pixels in the goal image that is given by the user. The pattern
set of the result image is the set of all black pixels of the result image.

Therein, countBlack is the number of black pixels in the result image (B +C),
matchBlack is the number of black pixels of the result image, which are also black
in the goal image (B), and refBlack is the number of black pixels of the goal image
(A + B). Then, the following ratios can be computed:

r1 = matchBlack
refBlack

, (11.10)

where r1 is the sensitivity, or amount of reference pixels matched by the pattern,

r2 = 1.0− countBlack−matchBlack
N − refBlack

, (11.11)

where r2 is the specificity, or amount of correct white pixels set in the result image
(N is the total number of image pixels), and

r3 = matchBlack
countBlack

, (11.12)



M. Köppen and R. Vicente-Garcia 225

where r3 is the positive predictivity, or percentage of matching pixels of the result
image. In case of empty reference or pattern sets (white images), r1 and r3 are set
to 0, respectively.

The multiple objective here is to increase these measures simultaneously. Af-
ter performing some experiments with the framework, it was decided to use the
following weighted sum of these three objectives as fitness measure:

freference(pattern) = 0.1r1 + 0.5r2 + 0.4r3. (11.13)

This fitness measure has the following properties.
(1) It counts better for patterns that are subsets of the reference. Subsets

obtain a fitness value of at least 0.9, since in this case specificity r2 and
positive predictivity r3 both take the value 1.

(2) It counts better for patterns that are subsets of the reference, and which
are supersets of other patterns that are also subsets of the reference (su-
persets of patterns have a larger value for sensitivity r1 than the pattern,
and again, r2 = r3 = 1).

(3) A white image as pattern gives a fitness of 0.5 (only specificity r2 �= 0),
therewith refusing to assign a good fitness value to the empty subset of
the reference.

These properties make this fitness measure useful for heuristic search procedures.
Initially, higher fitness values can be obtained by increasing the higher weighted
objective first. In our case this means that specificity r2, weighted with 0.5, is im-
proved first. In other words, the first subgoal of the search could be to allocate as
many correct white positions as possible. Due to the slightly smaller weighting of
0.4 for the positive predictivity r3, the search then could continue to allocate also
correct black positions of the reference, while the correct white allocations persist
in the pattern. Once, by this exploration, the pattern is reduced to a subset of the
reference, the only way to increase the fitness is to expand the subset towards the
whole reference set. This begins, when the fitness exceeds a value of about 0.9, and
exploitation starts.

11.4.2. Deriving a 2D-Lookup matrix

It was already noted that the specification of a 2D-Lookup matrix can be done
without the need for a separate adaptation. To make this more clearly, we recall
the dependencies between the parts of the framework. Using the notations in for
the original image, goal for the goal image, op1 and op2 for the two-operation
images after applying the operators o1 and o2 to in, res for the result image and lt2
for the 2D-Lookup matrix, the 2D-Lookup LU2 can be formally written as

res = LU2
(
o1(in), o2(in), lt2

) = LU2
(
op1, op2, lt2

)
, (11.14)



226 A framework for the adaptation of image operators

and thus it can be expected that there is also an operation or algorithm REL to
specify lt2 from the other terms in (11.14):

lt2 = REL
(
op1, op2, res

) = REL
(
op1, op2, goal

)
. (11.15)

The replacement of res with goal expresses the fact that the primary intention of
the adaptation is to have the relation res = goal fulfilled as good as possible.

For specifying REL, we consider a family of simple 2D-Lookup matrices,
where all positions but one position (a, b) are set to White (1), and the remain-
ing position (a, b) is set to Black (0). Then, the 2D lookup will give a resulting
image with all positions (x, y) set to Black, for which operation o1 yielded pixel
value a at (x, y) in op1 and operation o2 yielded pixel value b at (x, y) in op2. Usu-
ally, there will be only a few black pixels within the result image. Now, we compute
the fitness measure in (11.13) taking the set of black positions in the result image
as the pattern set, and the black pixels of the goal image as reference set. As it was
remarked in the former section, the fitness measure will give values above 0.9, if
the pattern set of black pixels lies completely within the reference set, even if this
set contains only one pixel. So, a simple criterion can be derived for setting a pixel
to Black or White in the 2D-Lookup matrix.

Let l(a,b) be a two-dimensional matrix constituted by setting only the position
at (a, b) to Black (0) and all others to White (1), and let res(a,b) be the result of the
2D lookup with the operation images op1 and op2 and this matrix l(a,b). Then we
use for REL:

lt2(a, b) =
⎧⎨⎩Black (0) if fgoal

(
res(a,b)

)
> 0.88,

White (1) otherwise.
(11.16)

It can be seen that this procedure REL only requires the operation images op1

and op2, and the goal image goal. In case there are no black pixels in res(a,b) at
all, lt2(a, b) is set to Gray (0.5), which stands for positions within the 2D-Lookup
matrix, whose pixel value pairs do never occur within the operation images op1

and op2 at the same location. The value 0.88 has been chosen instead of 0.9 to
tolerate a few black pixels in res(a,b) to be out of the goal set.

Figure 11.7 shows the result of the algorithm REL for the derivation of a
suitable 2D-Lookup matrix for two example operation images. This procedure,
which resembles a relaxation procedure, gives a quasioptimal 2D-Lookup matrix
for given operation images op1 and op2.

By this specification, the algorithm looks rather time consuming. However,
by doing some book keeping, and using the fact that only points will be set to
Black in the 2D-Lookup matrix, for which the corresponding grayvalue pairs in
the operation images have at least one position that is also set black in the goal im-
age, the processing time can be remarkably reduced. In the pseudocode shown in
Algorithm 11.2, the 2D-Lookup matrix is derived as a grayvalue image lt of size
256× 256 and with Black positions set to grayvalue 0, White psoitions to 255, and
Gray positions to 127.



M. Köppen and R. Vicente-Garcia 227

g1

g2 lrelaxation(g1, g2)

Result image

Goal image

Figure 11.7. In the middle, the result of applying algorithm REL to two-operation images (left) and
given goal image (bottom right) can be seen, and top right is the result of the application of this 2D-
Lookup matrix to the two-operation images.

Algorithm REL:
Input: op1, op2 - operation images; goal - goal image
Output: lt - grayvalue image of size 256x256
−−−
Init:
- set all pixels of lt to 127
- compute refBlack from goal

Algorithm:
for all pixel positions (i, j) with goal (i, j) = 0
begin

g1 := op1(i, j), g2 := op2(i, j)
if lt (g1, g2) = 127 then

countBlack := 0; matchBlack := 0;
for all pixel positions (k, l) in op1

if op1(k, l) = g1 and op2(k, l) = g2 then
countBlack++;
if goal (k, l) = 0 then matchBlack++; end if

endif
compute f = f (countBlack, matchBlack, refBlack)
if f >= 0.88 then lt (i, j) := 0;

else lt (i, j) := 255;
endif

end for all (k, l)
endif

end for all (i, j)

Algorithm 11.2

The following section describes the manner by which the two operations
needed are derived by an individual of a GP.



228 A framework for the adaptation of image operators

g1 g2 g3

g4 g5 λ−

Original image

Figure 11.8. Example for the intermediate images that were generated for an operator tree with oper-
ation images 1 and 2 on the top row.

11.4.3. Generic operator design

The operator selection is based on a tree-like representation of the image process-
ing operations. Each node in the tree refers to a generic image processing opera-
tion out of the set squaring, square root, move, ordered weighted averaging (OWA
[21]), fuzzy T-norm, and fuzzy integral [19] for nodes of arity one, and pixelwise
addition, subtraction, multiplication, and T-Norm for nodes of arity two (higher-
arity nodes are not used). The parameters of such a node operation are given by a
parameter structure resource, with the same structure for all nodes. This parameter
structure resource indicates an offset vector (for move operation), a weighted mask
(for OWA, T-norm and fuzzy integral), a weighting vector (for OWA) and some
flags and mode values. See [8] for more details on the operation specifications.

In the framework presented here, the operator selection is performed two
times, to get the operation images, from which the 2D-Lookup matrix is derived.
In all cases, the operation trees and the parameter structures are randomly ini-
tialized, and adapted later on by genetic programming [10, 11] as optimization
procedure to gain high fitness values.

The structuring of image processing operations by the trees has been chosen
in this manner for the following reasons.



M. Köppen and R. Vicente-Garcia 229

(i) The random selection of operations, which are represented by such trees,
can be done in a user-driven manner that favors well-known image pro-
cessing operations. Thus, a tree could be made more likely to represent
operations as dilation, erosion, closing, opening, morphological gradi-
ents, Sobel operator, statistical operators, Gaussian filtering, shadow im-
ages and so forth.

(ii) The represented operations are unlikely to give unwanted operation im-
ages, which are completely white or black.

(iii) The employed operators are local, that is, for each position of the result
image, the computed value is a function of the grayvalues of a bounded
domain (containing the same position) of the original image.

The maximum arity of a node is set to two. Also, maximum tree depth was re-
stricted to five. This was set in order to allow for the maintenance of the obtained
trees, for example, for manually improving the designed filters by removing re-
dundant branches. Processing time is kept low, too (but in the present version of
the framework, processing time does not go into the fitness function itself!).

Figure 11.8 shows a typical tree constructed in this manner and applied to
an input image with a fault structure on textured background (bottom subimage).
Figure 11.9 gives some operation images obtained from the same original image by
different randomly constructed and configured trees. These images demonstrate
the variabilty of the generated operations, each of which enhances or surpresses
different image substructures, and none of which gives a trivial image operation.

11.5. Framework extensions

In this section, we will introduce two optional extensions of the framework. The
next section is devoted to the aspect of obtaining filters with higher generalization
ability, and then, an optional preprocessing module based on 2D lookup with the
2D histogram is presented.

11.5.1. Reconstruction of the 2D-Lookup matrix

An important question is the generalization ability of the designed filters. While
they were designed for one and only one input-goal image pair, it may not be
obvious how the filter performs, if they are applied to the same situation presented
by another image.

The key for checking generalization ability of such a designed filter is given
by the generated 2D-Lookup matrices. These matrices can be manipulated for
improving the filter’s generalization ability. Figure 11.10 shows some 2D-Lookup
matrices, which were the result of applying the framework to various texture fault
examples (the texture faults themselves are of minor interest for the following). By
considering these matrices, the following can be noted.

(i) Some matrices seem to be separable, that is, the textured background is
represented by a group of compact white regions. The fault appearance
(the black dots) are well separated from these regions.



230 A framework for the adaptation of image operators

Figure 11.9. Result images of a random initialization of a population of image processing operators.

Figure 11.10. Example for 2D-Lookup matrices generated by the 2D-Lookup framework.



M. Köppen and R. Vicente-Garcia 231

(ii) The gray parts of the matrices represent positions, for which no special
rule could be assigned, since the corresponding pair of grayvalues was
not present in the operation images at the same position.

(iii) There are noncompact, noisy regions, where black and white dots are
completely admixed. This seems to be a combined effect. The grayvalues
around some position, which was indicated as foreground in the goal
image, could be similar (but not equal) to grayvalues around positions
that were indicated as background in both operation images. This is a
conflict in the assignment, as given by the goal image, and the rapid
changes between black and white for closeby positions reflect such an
ambiguity of an optimal assignment. The conclusion is that these filters
are not able to achieve a good separation between image foreground and
background.

(iv) Some matrices are separable by a horizontal or vertical straight line (e.g.,
lower left example of Figure 11.10). This means that the 2D-Lookup al-
gorithm can be simplified to thresholding op2 or op1, respectively.

To summarize: compactness within the 2D-Lookup matrices is considered as main
provision for filter’s high generalization ability. If the matrices are manipulated in
a manner, which enhances compactness of its black and white regions, the filter
will perform better on newly presented images (possibly for the price of a slightly
lower performance on the input image, from which the filter was designed).

But filter performance is not the only advantage of such a procedure. If it
would be possible to provide a description of the compact regions within a 2D-
Lookup matrix on a higher level than by its plain pixel sets, this information would
allow for deriving texture models from the framework’s results.

This leads to a new statement of the problem: to find out about compactness
within the class of images, to which 2D-Lookup matrices belong.

Neural networks would give a suitable procedure for the segmentation of the
matrix, since they attain generalization from data. In the following, an approach
based on the use of the unit radial basis function network (Unit-RBF), as proposed
in [1] will be given. The Unit-RBF approach is directly applicable to the problem
of approximating 2D-Lookup matrix images. The derived 2D-Lookup matrix was
decomposed into a black part and a white part. Since there are often fewer fore-
gound pixels in the goal images than background pixels, the black part image was
further processed by morphological closing operation (to join some isolated black
dots into a single segment). Then, the Unit-RBF approach was used to reconstruct
both images, rec1 from the black part, rec2 from the white part, and both images
were pixel-wise fused into a single image by using the rules given in Table 11.1.
Note that the entry 127 stands for undecidable positions, where no evidence can
be obtained from the framework adaptation.

Figures 11.11 and 11.12 give some examples for the replacement of the derived
2D-Lookup matrix with the reconstructed one. It can be seen that the differences
between the results are not very large, and that the reconstructed matrices have a
much simpler structure.



232 A framework for the adaptation of image operators

Table 11.1. Rules for fusion of the two Unit-RBF images at position (x, y).

rec1 rec2 rec

> 127 >127 max(rec1, rec2)
>127 ≤127 rec1

≤127 >127 127
≤127 ≤127 min(rec1, rec2)

Figure 11.11. Reconstruction of 2D-Lookup matrix. Upper row shows the original image, the 2D-
Lookup matrix as it was adapted by the 2D-Lookup-based framework, and its reconstructed version.
The lower row shows the goal image, the result of 2D lookup using adapted 2D-Lookup matrix, and
the result using the reconstructed matrix.

Figure 11.12. Another example for 2D-Lookup matrix reconstruction. The lower row shows the goal
image, the result of 2D lookup using adapted 2D-Lookup matrix, and the result using the reconstructed
matrix.

11.5.2. Optional preprocessing module

The framework has shown a good performance on a broad range of filtering tasks.
Filtering here means the separation of image foreground and background.



M. Köppen and R. Vicente-Garcia 233

(a) (b) (c)

Figure 11.13. Low-contrast stroke processing (a) shows a stroke on a collagen sheet, (b) shows a detail
enlarged, (c) gives the output of best 2D-Lookup adaptation, demonstrating the poor performance of
this algorithm in this case.

Input

image

Goal
image

Goal
image

Operator
selection

Op1

Op2

LT

2D
histogram

Operator
selection

Averaging

Op1

Op2

LT

Relaxation

Result∗
image

Result
image

Result
image

Figure 11.14. Extended framework for 2D-Lookup adaptation, with optional 2D histogram lookup
preprocessing module.

However, it also showed some falacities. So, a rather poor performance on
foreground appearance with very low contrast against the background was noted.
Figure 11.13 gives an example. The stroke-like fault structure in Figure 11.13(a) (a
scratch in a collagen sheet), clearly visible for a human, becomes nearly “invisible”
while getting enlarged (see Figure 11.13(b)). Figure 11.13(c) shows the result of
2D-Lookup adaptation, revealing only some random dot locations of the fault.

Analyzing this problem, it came out that the framework employs local image
processing operators only. Local processing here means that the domain of the
image processing operations is bounded to a spatial neighborhood of each pixel.
Detection of a stroke as the one in Figure 11.13 cannot be achieved by such a local
processing.

This subsection presents an approach to solving such problems, by introduc-
ing an extension of the 2D-Lookup framework, referred to as 2D histogram lookup
procedure. It is also based on the 2D lookup, but uses the normalized 2D his-
togram as 2D-Lookup matrix. The main advantage of this approach is that the
mapping assigns a low grayvalue to positions with grayvalue pairs that appear in-
frequently in the operation images (there are fewer corresponding entries in the
2D histogram). This increases the contrast of “untypical” image structures against
the background, and thus simplifies the following 2D-Lookup adaptation task.

Figure 11.14 shows the general framework for 2D-Lookup adaptation, with
the optional 2D histogram lookup extension. The components will be described in



234 A framework for the adaptation of image operators

the following sections. As can be seen, the extension has nearly the same structure
as the framework without extension, only the specification of the lookup matrix
LT is different.

The 2D histogram lookup is the 2D-Lookup algorithm with using the nor-
malized 2D histogram as lookup matrix (see end of Section 11.3).

For using the 2D histogram as lookup matrix, its entries have to be scaled into
the range of feasible grayvalues. For usual goal image sizes, entries in the 2D his-
togram are seldom larger than the maximum grayvalue, so the entries themselves
can be used as lookup matrix values, bounded at 255. Also, a contrast improve-
ment by linearization is reasonable, for gaining better contrast in the result image.
Linearization is the operation of making the sum-histogram of grayvalues stepwise
linear. It replaces each grayvalue in the image with the relative number of grayval-
ues equal or below this grayvalue. Hereby, the large number of zero entries in the
2D histogram is neglected, thus starting linearization at grayvalue 1.

While gaining higher contrast by linearization, the number of different gray-
values now in the result image becomes reduced. This gives images with a cluttered
appearance of the 2D-Lookup matrices in the following 2D-Lookup adaptation
step. This effect can be reduced by using a Gaussian smoothing operator of size 3
on the linearized image.

The framework for 2D-Lookup adaptation was extended in order to enable
the processing of low-contrast foregrounds. Figure 11.15 gives a complete example
for such an adapted filtering. This example demonstrates several things.

(i) The final result image in the lower left is much more similar to the goal
image than in Figure 11.13(c).

(ii) The result of the 2D histogram lookup preprocessing step has increased
the contrast of the stroke against the background. This allows for the fol-
lowing 2D-Lookup adaptation step to achieve that better performance.

(iii) The operation trees are not “smart” in the sense that parts of them may
do not have much influence on the operation result of the full tree. So,
the left wing of the operation 1 of the 2D lookup (the tree left below
in Figure 11.15) basically produces a gray image, from which a shifted
version of the preprocessed image is subtracted. Such parts can be re-
moved in a manual redesign phase of the filters after adaptation (espe-
cially when they involve computationally more expensive node opera-
tions like the fuzzy integral).

(iv) The 2D lookup for this example is basically a lookup with the cooccur-
rence matrix of the preprocessed image.

(v) The essential part of this filter lies in the operation 2 of the preprocessing
(upper right tree): the 2D histogram, with its line-like structure, forks
for some higher grayvalue pairs, thus stimulating a separation of image
parts into foreground and background.

Figure 11.16 shows another example, without the intermediate results. This is
a so-called “vibrating knife” fault that may occur in collagen slicing. The extended
framework shows a good performance here as well.



M. Köppen and R. Vicente-Garcia 235

Input image

Output image

Goal image

T-Norm

FZ
Integral

T-Norm T-Norm S-Norm T-Norm

FZ
Norm

FZ
Integral

FZ
Integral

FZ
Norm

2D-lookup matrix

MUL

MAX

Preprocessed

input image

DIF

QUAD

QUAD

QUAD

FZ
Integral

FZ
Integral

T-Norm T-Norm

Lookup matrix

Move

Move

Figure 11.15. Complete example for the extended framework adapted to the low-contrast stroke in
Figure 11.1.

11.6. Some results

In this section, some results of the application of the presented framework to some
texture analysis problem are presented. For the genetic programming, setting was



236 A framework for the adaptation of image operators

(a) (b)

Figure 11.16. Result of the extended framework for vibrating-knife fault.

Figure 11.17. Application of the framework to textile fault problems.

standard: 40 trees were used in each generation, and standard tournament cross-
over was the only genetic operator used in each generation to produce 80 children
nodes. The size of initial trees was restricted to have at least three nodes and to have
not more than 9 nodes. The evolution ran until there was no diversity anymore in
the population, which usually happened after about ten generations.

In Figures 11.17–11.20 the subimage order of each block is: upper-left
subimage is the original image, lower-left is the user-given goal image. Right and
below the original image are the two-operation images that are the result of the
application of the evolutionary adapted trees to the original image, and that are
the input operands for 2D-Lookup algorithm. The arrows from the operation im-
ages point to the used 2D-Lookup matrix (also indicated as a function of the two-
operation images and the goal image), and lower right is the obtained result image.

11.7. Summary

A framework was presented, which allows for the design of texture filters for fault
detection (two class problem). The framework is based on the 2D-Lookup algo-
rithm, where two filter output images are used as input.



M. Köppen and R. Vicente-Garcia 237

Figure 11.18. Application of the framework to further textile fault problems.

Figure 11.19. Application of the framework to floor pattern fault problems.

The approach can be applied to a large class of texture analysis problems. The
results, obtained without “human intervention,” are ready-to-use texture filters.
Also, they can be tuned in order to obtain even more better results, or combined
in a superposed inspection system. The following are our experiences during the
use of the system.

(i) The framework was able to design texture filters with good or very good
performance.

(ii) The goal image matched the fault region quite satisfactorily.
(iii) Bordering regions should be neglected for fitness evaluation.
(iv) The framework was able to design filters for the detection of noncom-

pact fault regions and fault regions with varying appearance.
(v) The designed filters may be subjected to further improvements by the

user.



238 A framework for the adaptation of image operators

(a) (b)

Figure 11.20. (a) application of the framework to cast fracture problem and (b) extraction of sheering
area on torned paper piece.

Improvements of the whole architecture were considered as well: one is based
on an evaluation of the 2D-Lookup matrix by neural networks in order to get a
more comprehensive solution for a given texture filtering problem, the other for
extending the application scope to low-contrast texture fault processing, that is,
faults which are hard to separate from the background texture. The second ex-
tension of the framework is a two-stage one, based on 2D histogram lookup and
consecuting 2D-Lookup adaptation.

Bibliography

[1] P. G. Anderson, “The unit RBF network: experiments and preliminary results,” in Proceedings
of the International ICSC/IFAC Symposium on Neural Computation (NC ’98), M. Heiss, Ed., pp.
292–297, International Computer Science Conventions, Vienna, Austria, September 1998.

[2] B. Bhanu and Y. Lin, “Learning composite operators for object detection,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’02), pp. 1003–1010, New York, NY,
USA, July 2002.

[3] B. Bhanu and Y. Lin, “Object detection in multi-modal images using genetic programming,” Ap-
plied Soft Computing Journal, vol. 4, no. 2, pp. 175–201, 2004.

[4] K. Franke and M. Köppen, “Towards an universal approach to background removal in images of
bankchecks,” in Proceedings of the 6th International Workshop on Frontiers in Handwriting Recog-
nition (IWFHR ’98), pp. 55–66, Taejon, Korea, August 1998.

[5] S. Grossberg, “A solution of the figure-ground problem for biological vision,” Neural Networks,
vol. 6, no. 4, pp. 463–483, 1993.

[6] C. Harris and B. Buxton, “Evolving edge detectors with genetic programming,” in Proceedings of
the1st Annual Conference on Genetic Programming (GP ’96), pp. 309–314, MIT Press, Cambridge,
Mass, USA, July 1996.

[7] M. Köppen and X. Liu, “Texture detection by genetic programming,” in Proceedings of the IEEE
Conference on Evolutionary Computation (CEC ’01), vol. 2, pp. 867–872, Seoul, South Korea, May
2001.

[8] M. Köppen and B. Nickolay, “Genetic programming based texture filtering framework,” in Pattern
Recognition in Soft Computing Paradigm, N. R. Pal, Ed., vol. 2 of FLSI Soft Computing Series, pp.
275–304, World Scientific, Singapore, 2001.



M. Köppen and R. Vicente-Garcia 239

[9] M. Köppen, A. Zentner, and B. Nickolay, “Deriving rules from evolutionary adapted texture filters
by neural networks,” in Proceedings of IEEE International Conference on Fuzzy Systems (FUZZY
’99), vol. 2, pp. 785–790, Seoul, South Korea, 1999.

[10] J. R. Koza, Genetic Programming—On the Programming of Computers by Means of Natural Selec-
tion, MIT Press, Cambridge, Mass, USA, 1992.

[11] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, Cam-
bridge, Mass, USA, 1994.

[12] B. T. Lam and V. Ciesielski, “Applying genetic programming to learn spatial differences between
textures using a translation invariant representation,” in Proceedings of the IEEE Conference on
Evolutionary Computation (CEC ’05), vol. 3, pp. 2202–2209, Edinburgh, UK, September 2005.

[13] M. Köppen, A. Soria-Frisch, and T. Sy, “Using soft computing for a prototype collagen plate
inspection system,” in Proceedings of the IEEE Conference on Evolutionary Computation (CEC ’03),
vol. 4, pp. 2844–2850, Canberra, Australia, December 2003.

[14] R. Poli, “Genetic programming for feature detection and image segmentation,” in Evolutionary
Computation, AISB Workshop, T. C. Forgarty, Ed., pp. 110–125, Springer, Brighton, UK, April
1996.

[15] D. G. Stork, R. O. Duda, and P. E. Hart, Pattern Classification, John Wiley & Sons, New York, NY,
USA, 2nd edition, 2000.

[16] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, UK, 1982.
[17] J. Serra, Image Analysis and Mathematical Morphology 2: Theoretical Advances, Academic Press,

London, UK, 1988.
[18] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic target classification and

recognition in synthetic aperture radar imagery,” in Proceedings of the 7th International Conference
on Evolutionary Programming (EP ’98), pp. 735–744, Springer, San Diego, Calif, USA, March 1998.

[19] M. Sugeno, Fuzzy Control, Nikkan Kogyo Shimbun-sha, Tokyo, Japan, 1988.
[20] W. A. Tackett, “Genetic programming for feature discovery and image discrimination,” in Pro-

ceedings of the 5th International Conference on Genetic Algorithms (ICGA ’93), S. Forrest, Ed., pp.
303–309, Morgan Kaufmann, Urbana-Champaign, Ill, USA, June 1993.

[21] R. R. Yager, “On ordered weighted averaging aggregation operators in multi-criteria decision
making,” IEEE Transaction on Systems, Man and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.

Mario Köppen: Department of Artificial Intelligence, Faculty of Computer Science and Systems
Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan

Email: mkoeppen@pluto.ai.kyutech.ac.jp

Raul Vicente-Garcia: Department Automation Technologies, Fraunhofer-Institute for
Production Systems and Design Technology, Pascalstr. 8-9, 10587 Berlin, Germany

Email: raul.vicente@ipk.fraunhofer.de

mailto:mkoeppen@pluto.ai.kyutech.ac.jp
mailto:raul.vicente@ipk.fraunhofer.de

