
Concurrent Application of Genetic Algorithm
in Pattern Recognition

Mario Köppen1, Evgenia Dimitriadou2
1Fraunhofer IPK

Pascalstr. 8-9, 10587 Berlin, Germany
E-mail: mario.koeppen@ipk.fhg.de

2 Institut für Statistik und Wahrscheinlichkeitstheorie
Technische Universit¨at Wien

Wiedener Hauptstr. 8-10, A-1040 Wien, Austria
E-mail: evgenia.dimitriadou@ci.tuwien.ac.at

Abstract. This paper proposes the fitness control procedure for the application of ge-
netic algorithms (GA) in pattern recognition. Instead of using GA to solve a concomi-
tant optimization problem, the task is rather represented as a set of data bitstrings, and
a similarity measure among those data bitstrings. Then, the GA is used to select the
subgroup yielding highest mutual similarity. The paper also provides and discusses
some examples for such a procedure, taken from the fields: pattern classification, clus-
tering, and measuring.

1 Introduction

Many approaches to pattern recognition are related to an appropriate concept of pattern sim-
ilarity, be it in classification, clustering, segmentation or verification. Since similarity is a
non-crisp feature, it is reasonable to describe similarity by degree values. Then, including
similarity into the analysis needs an objective function (efficient procedure) that evaluates to
a degree of similarity or incorporates degrees of similarity into another computation. How-
ever, at the same moment the objective function entails the set of attainable solutions as well.

Looking more closely on similarity, it can be seen that similarity is related to localization
of a set of data vectors in a (often metric) space of sufficiently high dimensionality. In such
a context, we are looking for representing degrees of similarity by more than one numeri-
cal value. The approach followed in the work presented here is to derive a set of bitstrings
reflecting the similarity of the given data and to restrict all further evaluations on the simi-
larity between these bitstrings. The paper will detail on approaches to attain bitstrings that
represent similarity, but it may be stated here that there are roughly spoken two fundamental
ways: either the bitstrings are derived from vector data, by assigning a bitstring of lengthn
to a vector ofn components (so one bit represents one data component), or by applying a set
of computations to the given data, each one producing its output as a bitstring (with one bit
representing one data vector).

Once having such a bitstring representation of similarity, genetic algorithms (GA) can be
used for further analysis [1]. It is obvious that similarity within a set of bitstrings is directly

related to building blocks, i.e. to positional correspondences between substrings of the bit-
string occurring with higher frequency. In this context, the Schemata theorem gives the basic
theoretical underpinning of the functionality of genetic algorithms. It indicates, with some
restrictions, the accumulation of building blocks correlating to higher fitness in the evolving
population. However, while useful for theory, schemata are rarely considered for the appli-
cations of GA itself. This also holds for image processing and pattern recognition. In [2],
there is a comprehensive survey of applications of GA in image processing. It can be easily
seen that all of the approaches use GA for solving optimization problems that come up dur-
ing solving an image processing task by providing a suitable fitness function, an encoding
scheme, and possibly by modifying genetic operators, and then selecting the best individual
according to the given fitness measure.

So, the approach to use GA for quantifying similarity by counting on the ability to ac-
cumulate building blocks is rather new application of using GA in pattern recognition. The
basic concept is illustrated in fig. 1. On the left hand side, there is what we consider the stan-
dard application framework of GA in pattern recognition: an optimization problem is defined
and GA is used to evolve a good solution to that problem. Of course, this approach is not re-
stricted to pattern recognition. All other optimization procedures (gradient descent, simulated
annealing, dynamic programming,. . .) might be used as well. Usually, the advantage of GA
is related to the complexity or non-linearity of the optimization task.

Figure 1: Concurrent approaches for using genetic algorithm in pattern recognition.

The right hand side of figure 1 gives the alternate procedure: while still providing an opti-
mization task, its optimal solution is not the desired goal of the approach. Other information
obtained from the evolving or from the evolved population will give the desired result. We
will refer to this concurrent approach asfitness control.

The basic means for such evaluations will be given in the following sections, each of
which is illustrated by an application example. But before, the underlying bitstring similarity
problem has to be clearly stated and analyzed (section 2).

2 Generalized Bitstring Prototype Problem

This section will introduce the Generalized Bitstring Prototype Problem (GBPP). Examples
of how this problem appears within the circumstances of pattern recognition problems will
be considered in the following sections.

We begin with some explanatory remarks. The general situation is assumed as follows:
given a setB of k bitstrings of lengthn each (i.e. sequence ofn signs being either 0 or 1) that
consists ofkb ≤ k repetitions of a bitstringb and the remaining bitstrings being randomly

distributed (random in the sense that it is equally likely for any bitstring element to be 0 or
1). We are in search for a procedure to findb from all bitstrings inB.

The basic procedure to solve this problem is the so-calledHamming fusionof all bit-
strings: withB = {bi} andbi[j] being the sign at positionj in bitstringbi, H0

j (B) annotates
the number of occurrences of a 0 at positionj:

H0
j (B) = |{bi ∈ B| bi[j] = 0}| (1)

andH1
j (B) = |B| − H0

j (B) gives the corresponding number of 1 at positionj. Now, the
Hamming fusion ofB is given with the bitstringt = HF (B) of lengthn and witht[j] = 0
if H0

j (B) > H1
j (B), with t[j] = 1 if H0

j (B) < H1
j (B) and either 0 or 1 ifH0

j (B) =
H1

j (B). Obviously,HF (B) is the bitstring with the smallest average Hamming distance to
each bitstring inB (therefore we will refer to this operation as Hamming fusion).

Moreover, it may be expected thatHF (B) = b for the problem given above, since in case
b[j] = 1 it may be estimated thatH 1

j (B) = (k − kb)/2 + kb > H0
j (B) = (k − kb)/2 thus

HF (B)[j] = 1 and similarilyHF (B)[j] = 0 in caseb[j] = 0.
An extension of the problem might be that there are notkb identical copies ofb in B but

that these subsets are slight variations ofb. As long as more than half of the bits at position
j in this subset are equal tob[j], the argument just given still holds, and the Hamming fusion
will compute tob.

Thus, the problem of finding a subset of a setB of bitstrings, showing higher similarity
of the bitstrings to each other than to the remainder of the set, can be replaced by the problem
of finding a bitstring with lowest average Hamming distance to each bitstring to the whole
set. Obviously, this is a feature of the Hamming distance metric that does not hold for other
metrics like the euclidian distance.

2.1 Problem statement

Let π = (a1, a2, . . . , al) be a partitioning scheme of a bitstring of length
∑

i ai = n. Thus,
π describes a partition of any bitstring of lengthn into substrings of lengtha i. Further be
the symbolic Hamming distance between two such substrings of the same length given with
0 if both substrings are equal, and 1 if they differ in at least one position. So, the Hamming
distancehπ (according toπ) of the two (partitioned) bitstrings0100011 and0101010 is 1 for
π = (2, 1, 4) and 2 forπ = (1, 1, 1, 1, 1, 1, 1) (the conventional Hamming distance).

Note that the Hamming fusion can be easily extended to the case of general partitionsπ.
Instead of counting frequencies of 1 or 0 at a bit position, the frequency of each substring
is counted, and the substring (or any one of the substrings) with highest frequency gives
the corresponding substring of the resulting bitstring. This Hamming fusion also serves the
bitstring with smallest average Hamming distance according toπ.

Also bep > 0 an integer,cond a logical condition assigningtrue or false to a bitstring
of lengthn, which selects the subsetBcond of bitstrings out ofB that fulfill cond, andcrit
an objective that can be computed from a set ofp bitstrings (e.g. the sum of all pairwise
Hamming distances to be maximal).

Then, a Generalized Bitstring Prototype Problem is given by the tuple(π, cond, crit, p).
The objective is for any given setB of k bitstrings of lengthn to findp bitstringst i of length
n fulfilling

00 01 10 11
00 0 1 1 2
01 1 0 2 1
10 1 2 0 1
11 2 1 1 0

Table 1: Hamming distances forn = 2.

∑

b∈Bcond

mini=1,...,phπ(ti, b) = min (2)

crit[ti] = max (3)

Thus, the set of allti comprises a set of prototypes, to which the ”joint” distance of each
bitstring in B is minimal on average. As already noted, the Hamming fusion ofB solves
the simplest case, whereπ gives the bitwise Hamming distance,cond always assignstrue,
crit is constant andp = 1. In casep > 1, each prototype of the optimal choice will select
(by smallest Hamming distance) a subset ofB, of which the prototype itself is the Hamming
fusion.

2.2 Discussion of simple cases

Next simplest case of the GBPP is the casep = 2. Here, no general solution can be provided,
but some insight may be gained from considering special cases. Table 1 shows pairwise Ham-
ming distances between all possible bitstrings of length 2. It can be seen that the minimum
Hamming distance between any pair of different bitstrings to all four possible bitstrings is
always the distance 0 in two cases and the distance 1 in the remaining two cases . Moreover,
to each selection of the 0 and 1-assignments (two times each), a corresponding pair of bit-
strings can be found so that their minimum pair distances just give these values. For example,
to have pairwise Hamming distances 0 to the bitstrings 00 and 01, and 1 to the bitstrings 01
and 11, the pair has to be selected as(00, 01). From this we may see the optimal choice for
the bitstring pair. If bitstringb appearskb times inB, the smallest achievable sum of pairwise
minimum Hamming distances is obtained if and only if the distances 1 are assigned to the
two smallestkb. Thus, the optimum selection are the two most frequent bitstrings inB.

Having bitstrings of lengthn = 3 changes the situation. Table 2 shows Hamming dis-
tances between all eight possible bitstrings of length 3. It can be seen that the minimum
between two columns is Pareto minimal if the columns corresponds to bitstringb and its in-
verse. In this case, the pairwise minimum distance is 0 in two cases, 1 in the remaining six
cases. For all other pairs of bitstrings, each pairwise minimum distance is at least as large as
in the case of inverse bitstrings.

Thus, when each possible bitstring of length 3 is present inB the sum of the pairwise
minimal Hamming distances can not be smaller than for the pair of bitstrings(b, b̄) for which
kb + kb̄ becomes maximum (thus minimizing the sum of all other frequencies biased with
pairwise mimimum Hamming distance 1).

So, in casen = 3 with kb > 0 for anyb, the optimum choice of a pair of bitstrings(b1, b2)
has the property thatb2 = b̄1 (this was not the case forn = 2).

000 001 010 011 100 101 110 111
000 0 1 1 2 1 2 2 3
001 1 0 2 1 2 1 3 2
010 1 2 0 1 2 3 1 2
011 2 1 1 0 3 2 2 1
100 1 2 2 3 0 1 1 2
101 2 1 3 2 1 0 2 1
110 2 3 1 2 1 2 0 1
111 3 2 2 1 2 1 1 0

Table 2: Hamming distances forn = 3.

If some of thekb = 0, this does not hold. Any pair can become optimal, as can be easily
seen when composingB out of any two bitstrings only (which will comprise the optimal
solution then as well).

Forn ≥ 4, the difference between odd and evenn continues. Without proof, the following
relation shall be noted here: Bev(a, b) the vector obtained from the pairwise minimum Ham-
ming distances of(a, b) to all bitstrings of lengthn (in a fixed order), i.e. for all bitstringsc of
lengthn the smaller value ofh(a, c) andh(b, c). Then, for(b, b̄) any pair of inverse bitstrings,
and(b1, b2) any pair of bitstrings such that inb2 exactly(n − 1) positions are inverse to the
corresponding positions inb1 (or h(b1, b2) = n − 1), the corresponding vectorsv(b, b̄) is a
permutation ofv(b1, b2) if n is even.

This has an important meaning: ifn is even andB consists of all possible2n possible
bitstrings, each one occurring with equal frequency, then each pair(b1, b2) gives the optimum
for the pairwise minimum Hamming distance if and only ifb1 andb2 do not have more than
1 position in common. In case of oddn, b1 andb2 have to be inverse to each other.

However, the largern the more unlikely it will become to have eachkb > 0 in B. And
no closed solution can be provided here in case thekb differ. So far, best known approach
is to compare the sums of allkb values for the Pareto set of pairwise mimimum Hamming
distances of any two bitstrings. So, a similar study of the caseπ = (2, 1) for p = 2 gives the
size of this Pareto front to be 32 (out of 64 choices for the pairs of bitstrings).

To summarize, the solution of an GBPP strongly depends on the lengthn of the bitstrings,
and the distribution of bitstrings in the setB. In casep = 2 a good heuristic is to check
for pairs of inverse bitstrings. But in general, there are cases where the number of optimal
solutions is exponentially increasing withn.

This discussion shows the high complexity of the problem even for the most simple cases.
Many questions have to be left open here, and further studies may reveal new insights into
the GBPP. At the present stage, no algorithm is known to reduce the exponentially growing
number of choices that have to be tested for finding the minimum selection of prototype
bitstrings.

2.3 Fitness control procedure

As stated in the foregoing section, the simple GBPP can be solved by directly computing the
Hamming fusion of the set of bitstrings. In more complex cases, the ability of the GA to accu-
mulate above-average schemata in the population might be of interest. Figure 2 demonstrates

how this can be also understood as a selection procedure. The left hand side of fig. 2 shows a
unit square, with two marked areas within, so-called “manna.” Each black dot represents an
individual of a GA population, with(x, y) coordinates as their encoding, and a fitness func-
tion related to the presence of manna at the respective(x, y) position of the individual1. The
right hand side gives the position of those individuals past ten generations. What can be easily
seen is that most of the population now resides in the larger manna area. In other words: the
ratio of individuals in the area does not reflect the ratio of the areas itself. It does reflect the
ranking of the areas, or it can be considered that the GA didselectthe largest manna area.

(a) (b)

Figure 2: Genetic algorithm solving a selection task.

This gives an intuitive notation for the here-proposed GA application approach itself:
given a setM of datami and a measure of similarity among datas(mi, mj), a GA is able
to select the largest subgroup of similar data. In the study so far, the data are supposed to
be represented as bitstrings. For preventing mismatch with the bitstrings, which compose the
population of a GA, we will refer to them as data bitstrings.

Then, the general fitness control procedure is as follows:

1. Design a set of data bitstrings from the application.

2. Define a GBPP for the data bitstrings, which gives a fitness function.

3. Let the GA evolve towards the minimal value of this fitness measure.

4. From the best individualp of the GA population, select all data bitstringsm i with s(p, mi) <
θ with θ being a chosen threshold.

3 Application examples

3.1 Main color extraction

A simple application example is given by the task of detecting a dominant color in an image.
This information might be of relevance for object extraction or image classification. Here, it
is considered how bitstring fusion can be used to approach this task. In such a case, the image
shall be given in a color model, e.g. in RGB represenation, with 8bit color depth for each of
the three channels. Then, the binary representations of each color value are taken as bitstring,
and the set of the bitstrings of all pixel in the image gives the setB. It has to be noted that
the higher-order bits of each channel represent more of the color image information than the
lower bits (e.g. with the first bit of a channel indicating whether the value at that position is
larger than 128 or not).

1See http://www.caplet.com/MannaMouse.html for a detailed description of the experiment.

So, we consider the Hamming fusion of all pixel color values according to a partition
π that handles the higher bits different than the lower bits in each channel. Examples are
π1 = (2, 6, 2, 6, 2, 6) for a 24bit RGB color value, as well asπ2 = (4, 4, 4, 4, 4, 4). Fig.
3 shows the output of these two fusions. In the subpictures (b) and (c), all pixel from the
original image (a) were reproduced that were closer to the Hamming fused bitstring than 70.
It can be seen thatπ1 andπ2 behave different. So, while in the first 2 bit of each color channel
the color green is more present, in the first 4 bit the red part becomes more dominant due to
its higher homogenity (i.e. in the green parts are more variations of the bits 3 and 4). This
shows how such a procedure can be adapted to various circumstances in main color selection.

(a) (b) (c)

Figure 3: Main color extraction due to different bitstring partitions: (a) original image with green and red pepper,
(b) separation withπ = (2, 6) in each channel extracting the more inhomogenuous green parts, (c) using
π = (4, 4) extracts the more homogenuous red parts.

The reason to fuse the lower bits as well is that in this case there is a highly homoge-
nous subpart of the image present, the fusion may give the corresponding color value more
precisely.

So, the direct solution of the GBPP already gives very good results. Of course, the proce-
dure can be applied in an iterative manner (e.g. to extract ink and paper color on document
images). First, main color is extracted by fusing all color values, then the pixel similar to this
main color are masked, and the main color of the remaining pixel is determined. Then, the
procedure is repeated with the remaining pixels.

In this context, GA is not needed to obtain good results. However, in case two or more
colors are expected to be present in the image to comparable degree, GA can be used to solve
the corresponding GBPP.

3.2 Invoice table detection

An application for such a procedure was given in [3], in the context of invoice table detection.
The task was to find the table area in the digitized document of an invoice sheet. By

applying operations of mathematical morphology, all text rows may be selected (this will
not be detailed here). However, only a subset of those text rows compose the table. All rows
belonging to the table are similarily formatted, but they are not completely equal. So, the
table is defined as that subset of the set of all text rows, with higher pairwise similarity than
to all other text rows.

Similarity may be measured by constructing templates from text rows. For doing so, the
image of a text row is divided into cells, with cell width being a constant corresponding

to the estimated width of a character in a line of text. Now, a data bitstring is constructed
from each text row, with the same size as the number of cells of a text row. Bitvalue 1 in
the bitstring is set if the corresponding text row cell has more black than white pixels (thus,
there is a character of text within), and bitvalue 0 otherwise. This ends step 1 of the given
approach. In the further development it came out that the procedure was more reliable when
usingp = 2 prototype bitstrings, thus accounting for the high variations in the length of the
article name entry. The GBPP formulated from this usesπ = (1, 1, . . . , 1), cond always true,
crit as constant andp = 2. After processing steps 3 and 4, the best individual has selected
the text rows that compose the invoice table.

In [3], it was reported that such a procedure made only 23 errors for the evaluation of
184 table rows of 12 invoice sheets. Due to low computational demand of the fitness function
calculation, this approach works in real-time. Further postprocessing might reduce that error
rate even more.

3.3 Robust Clustering

Fitness control can be also applied to obtain robust (and blind) clustering of data. The basic
assumption on robust clustering, which is employed here, is as follows: When a clustering
method is inappropriate for the given data set, it will give more differing clustering results
when the initial conditions or the given data values are randomly modified, than for an ap-
propriate clustering method (see fig. 4).

Figure 4: Applying different clustering methods to the same data.

Assume a (numbered) data setd = (d1, d2, . . . , dn), which has to be separated into two
clustersC1 andC2. Further assume a set ofM1, M2, . . . , Mk clustering algorithms (e.g. k-
means, neural gas,...), theM1(ci), M2(ci), . . . , Mk(ci), 1 ≤ i ≤ 2, results of which, when
applied tod, will depend on an initial configuration of theci centers, and a setV of l random
modifications ofd, e.g. moving the data point by a small amount in a random direction. Then,
when a clustering algorithmMp, 1 ≤ p ≤ k, is applied to the modified data setVj(d), it will
assign each data point ind to eitherC1 or C2. This can be represented by a data bitstring.
For example, if there are four data points, the bitstring 0110 describes that data pointd1 and
d4 have been assigned to clusterC1 and data pointsd2 andd3 have been assigned to cluster
C2. Applying all k clustering algorithms to alll modifications of the data setd will give

k · l bitstrings. Under the assumption given above, for appropriate clustering methods, there
should be more similar bitstrings than for inappropriate ones. In other words: the common
schemata of allk · l bitstrings hint on a more fitted clustering.

Again, steps 1 to 4 of the fitness control procedure can be performed. At the end, some
of the data bitstrings are selected, yielding information by itself (as e.g. for the most suited
cluster procedure among then clustering algorithms).

The GBPP here was as before, with thecrit set to have maximum Hamming distance
between the two prototypes. The reason for this is quite simple: all cluster variations yield
two classes of output, but it can not be foreseen whether cluster 1 is always assigned to 1 or
to 0. So, even completely equal clusterings may give bitstrings that are inverse to each other.
With the additional criteria, the optimization may respect this issue.

The Intertwined Spirals data set [4] was analyzed this way [5]. At the end, the decompo-
sition of the data set into the two spirals was found, and the Agglomerative Clustering also
was found to be the most suitable procedure.

3.4 Heuristic measures

Instead of schematas, the fitness value obtained after a fixed number of GA generations might
be of interest as well. Thus, problem classes can be defined according to intervals, into which
such a fitness value falls.

A more sophisiticated example for such a “fitness calibration” was given in [6]. There,
the issue of KIRLIAN images was considered, and the task was to study whether KIRLIAN

images reflect some kind of intra-person specificity or not. For doing so, KIRLIAN images
from all fingers were taken from a number of subjects at different times, and subjects were
selected with perceptually similar KIRLIAN patterns. Now, a GA was used tomeasurethat
perceptual similarity.

ϕ

ϕ
π

Figure 5: Enrolling of a KIRLIAN image.

For doing so, each finger image was unrolled first (see fig. 5). The unrollings were used to
define the data bitstrings: if at angleφ the fraction of the beam in the directionφ and starting
from the (interactively set) centerC of the KIRLIAN image, which crosses the pattern is larger
than 25 per cent of the maximum value in any direction, the bit was set to 1, 0 otherwise.

Each group of perceptual similar KIRLIAN images gives a set of data bitstrings, and we
may start steps 2 and 3 of the fitness control procedure. However, step 4 is now replaced by
taking the best fitness value after 200 generations.

The experiment was repeated with groups of randomly selected KIRLIAN images (i.e.
images of different subjects), and also with random settings for the unrollings.

The obtained fitness values belonged to three classes: all random patterns gained fitness
values between 0.25 and 0.30; all random sets of KIRLIAN images gained fitness values
between 0.28 and 0.32; and all perceptual groups of KIRLIAN images gained fitness values
from 0.34 to 0.53. Thus, the class of perceptual similar KIRLIAN images of the same subject
is clearly distinguished from the class of random KIRLIAN images and random patterns, and
this gives a justifiable evidence for intra-person specificity of KIRLIAN images.

4 Conclusions

In this paper, the fitness control procedure was introduced for the application of GA in image
processing an pattern recognition tasks. Instead of deriving an optimization problem from the
image processing problem and solving it by GA, a set of data bitstrings has to be derived
from the problem, with similar data bitstrings representing the solution of aselectiontask.
Then, the GA can be used for evolving a bitstring with high similarity to all data bitstrings,
and the subgroup of most similar data bitstrings to that evolved bitstring (or the fitness value
achieved) is taken as the result. Examples, where such a procedure might be applied, were
given and discussed. The tasks were: main color selection, classification of text rows of a
digitized invoice document into table rows and non-table rows; clustering of data by selecting
the most suitable clustering algorithm among a set of concurrent clustering algorithms; and
heuristic measuring of perceptual similarity of groups of images (KIRLIAN images in this
case). The examples illustrate the pervasiveness of the proposed procedure, and demonstrates
its general character.

References

[1] John H. Holland.Adaptation in Natural and Artificial Systems. MIT Press, 1992.

[2] C. Bounsaythip and J. Alander. Genetic algorithms in image processing - a review. InProceedings of the
Third Nordic Workshop on Genetic Algorithms and their Applications (3NWGA), pages 173–192, 1997.

[3] Mario Köppen, Dörte Waldöstl, and Bertram Nickolay. A system for the automated evaluation of invoices.
In Jonathan H. Hull and Suzanne L. Taylor, editors,Document Analysis Systems II, pages 223–241. World
Scientific, Singapore a.o., 1997.

[4] Hugues Juillé and Jordan P. Pollack. Co-evolving intertwined spirals. In Lawrence J. Fogel, Peter J. Ange-
line, and Thomas Baeck, editors,Evolutionary Programming V: Proceedings of the Fifth Annual Conference
on Evolutionary Programming. A Bradford Book, MIT Press, Cambridge, MA, 1995.

[5] E. Dimitriadou W. Gablentz, M. K¨oppen. Robust clustering by evolutionary computation. In J. Tanskanen
J. Martikainen, editor,Proceedings WSC5 (CD-ROM), 2000.

[6] H. Treugut M. Köppen, B. Nickolay. Genetic algorithm based heuristic measure for pattern similarity in
kirlian photographs. In E.J. Boers, editor,Applications of Evolutionary Computing, Springer Lecture Notes
on Computer Science 2037, pages 317–324, 2001.

