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Abstract

This paper presents the application of evolutionary
multi-objective optimization (EMO) to the improve-
ment of a face detection system. The face detection
system is based on the boosted cascade system, and ana-
lyzes image positions on different scales in a three-step-
procedure. Based on threshold settings, the algorithm
decides whether to continue with the test on a finer
scale at the current position. Thus, the thresholds for
all scales and stages have a major influence on the per-
formance of the system, and become the subject of the
evolutionary optimization according to three objectives:
low false positive rate, high detection rate and low pro-
cessing time. The used EMO is the extension of the
Standard Genetic Algorithm to the EMO case by using
Fuzzy Pareto Dominance as a meta-heuristic. The ap-
plication of this EMO to the face detection system is
explored and discussed using images from a standard
face detection benchmark dataset. From the runtime
analysis of the EMO it can be concluded that the algo-
rithm reliably approaches the Pareto set of the problem.

1. Introduction

Face detection is a key step in almost any com-
putational task related with the analysis of faces in
digital images (access control, identification for law
enforcement, borders control, identification and ver-
ification for credit cards and ATM, human-machine
interfaces, passive recognition of criminals in public

places or buildings, etc.). Given an arbitrary image,
the goal of a face detection system is to find all con-
tained faces and to determine the exact position and
size of the regions containing these faces. When an-
alyzing real-world scenes, face detection is a challeng-
ing task, which should be performed robustly and effi-
ciently (real-time), regardless variability in scale, loca-
tion, orientation (in-plane rotation), pose (out-of-plane
rotation), illumination, artifacts (beard, eye-glasses,
etc.), and facial expressions, and considering possible
object occlusions.

In this paper, we are considering the optimization
potential of a face detection system, which has a cas-
cading architecture. The heuristic used to optimize the
system corresponds to find the thresholds of a grid de-
signed for avoiding classifying every possible window
of the image in this cascade, thus reducing processing
time by preserving low error rates. This problem is
of multi-objective nature. While it is common to con-
sider a weighted summarization for the two error rates
in detection systems (false positive and false negative
rate), the influence of such an internal feature reduc-
tion is not so directly linked to these error rates, and
should rather be considered an objective by its own.
It is well-known that in a multi-objective optimization
problem the set of supported solutions (i.e. optima
obtained from a convex combination of the objectives
as a weighted sum) is usally not covering the Pareto
front once this front contains concave parts. In case of
combinatorial multi-objective optimization, the ratio
of the number of supported solutions to the number of
elements of the Pareto set may even fall exponentially
with problem dimension (see [16] for this happening



with the multi-objective 0/1 knapsack problem).
Noting that a complex image analysis system usually

contains a large set of adaptable parameters, where the
influence in the objectives (once they are e.g. computed
by using a set of test data) can hardly be modeled di-
rectly, it has to be considered that only an exploration
of the Pareto front of the system can yield sufficient
insight into the suitability of such a system for its ap-
plication. Here, we study the use of an Evolutionary
Multi-Objective Optimization algorithm in a given face
detection system. In this system, three objectives are
minimized: (1) false positive rate, (2) false negative
rate and (3) number of evaluated features, which influ-
ences the speed of the detector. It is worth to remember
that by minimizing the false negative rate (FNR), the
detection rate (DR) is maximized (DR=1-FNR).

Section 2 recalls the basic concepts of EMO and in-
troduces the used algorithm, which is based on a fuzzi-
fication of the Pareto dominance relation. The reason
to chose this algorithm here were: (1) scale-invariance
in the objectives, (2) implicit handling of the crowd-
ing problem, and (3) ease of implementation, since it
is a simple extension of the Standard Genetic Algo-
rithm. Then, section 3 presents the face detection sys-
tem, and the manner in which it was made subject to
multi-objective optimization. Section 4 studies the re-
sults of the application of the EMO onto this system,
before some conclusions are drawn in section 5.

2. Basic Concepts

2.1. Fuzzy-Pareto-Dominance

In multi-objective (or multi-criterion) optimization,
the optimization goal is given by more than one ob-
jective to be extreme. Formally, given a domain
as subset of Rn, there are assigned m functions
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn). Usually, there is
not a single optimum but rather the so-called Pareto
set of non-dominated solutions:

For two vectors a and b it is said that a (Pareto)
dominates b, in terms a >D b, if each component of a

is less or equal to the corresponding component of b,
and at least one component is smaller:

a >D b ←→ ∀i(ai ≤ bi) ∧ ∃k(ak < bk). (1)

Note that in a similar manner Pareto dominance can
be related to >-relation.

The subset of all vectors of a set M of vectors, which
are not dominated by any other vector of M is the
Pareto set (also Pareto front). The Pareto set for uni-
variate data (single objective) contains just the maxi-
mum of the data.

We consider the fuzzification of the Pareto domi-
nance relation, as given with the following definition,
in order to base a multi-objective extensions of single-
objective evolutionary algorithms on it [7]:

It is said that vector a dominates vector b by degree
µa with

µa(a, b) =

∏
i min(ai, bi)∏

i ai

(2)

and that vector a is dominated by vector b at degree
µp with

µp(a, b) =

∏
i min(ai, bi)∏

i bi

(3)

Remarks: Note that the definitions differ in the de-
nominator and thus are not symmetric: ”dominating
by degree µ” and ”being dominated by degree µ” have
different fuzzy values. The definition is similar to so-
called subsethood degrees as introduced by Kosko [8].

For a Pareto-dominating b, µa(a, b) = 1 and
µp(b, a) = 1, but µp(a, b) < 1 and µa(b, a) < 1.

We may use these dominance degrees to rank a set
M of multivariate data (vectors) like the fitness values
of a multiobjective optimization problem. Each ele-
ment of M is assigned the maximum degree of being
dominated by any other element of M , and the ele-
ments of M are sorted according to the ranking values
in increasing order:

rM (a) = max
b∈M\{a}

µp(a, b) (4)

Note that this definiton is related to a set. A ranking
value of a within M can only be assigned with reference
to a set M containing a.

By sorting the elements of M according to the rank-
ing values in increasing order (FPD ranking, FPD for
Fuzzy-Pareto-Dominance), we obtain a partial rank-
ing of the elements of M . For vectors with the same
ranking values (like all dominated vectors), we have to
assign a random ordering. There is no additional cue
for complete ranking of these vectors.

An important property of this ranking scheme is
that it can not be obtained by sorting of a weighted
sum of the components. More general, it can be shown
that there is no scalar function of vector components
of one vector at all, which will give the same ranking of
the vectors of a set M . This can be shown by a simple
counterexample. In addition it should be noted that
the FPD ordering is also scale-invariant.

2.2. SGAf2r Algorithm

Fuzzy-Pareto-Dominance can be considered a meta-
heuristic to make single-objective optimization algo-
rithms capable of handling multiple objectives as well.



This is achieved by using the ranking values of the fit-
ness objectives vectors as replacements of the fitness
values in the single-objective case. The main prerequi-
site is the suitable identification of sets M , for which
the ranking values are specified. In evolutionary com-
putation, M will be easily identified with the popula-
tion of individuals.

If we apply this concept to the Standard Genetic Al-
gorithm (SGA) we obtain the SGAf2r algorithm, where
the subscript f2r indicates the replacement of fitness
values by ranking values. Due to space limitations, for
more details of the algorithm the reader is referred to
[7].

3. Face Detection System

3.1. System Overview

Several approaches have been proposed for the
computational detection of faces in digital images.
Starting with the seminal works or Rowley [12] and
Sung&Poggio [14], successful proposed approaches in-
clude the use of neural networks [2], SNoW classifiers
[19], Bayesian classifiers [13], SVM [11], and boosted
cascades [15][10]. A comprehensive review can be found
in [5][18]. Nowadays, most successful results have been
obtained by using boosted cascades and neural ap-
proaches [2][15][17][3][10][6][9][4].

The here implemented face detection system is based
on the boosted cascade system proposed by Viola and
Jones [15], with the later improvements proposed by
Wu et al. [17]. These two cascade face detectors out-
perform previous systems in terms of processing speed,
by keeping a high recognition rate. Our face detection
system employs simple rectangular features (a kind
of Haar wavelets) [15] and LBP-based features [3], a
nested-cascade of filters [17] that discard non-face im-
ages, the integral image for a fast computation of the
rectangular features [15], weak partitioning real Ad-
aboost as a boosting strategy for the training of the
detectors [17], and LUTs (Look-up Tables) for a fast
evaluation of the weak classifiers [17]. It is worth to
mention that using real Adaboost, a confidence value
of each detected face is calculated. That means that
the detection results are not binary (yes/no) but real-
valued. The key idea to obtain a fast detection is that
the complexity of the filters (i.e number of features) in-
creases when advancing in the cascade. In this way for
windows that are easy to classify, not much processing
is performed.

The block diagram of the face detector is presented
in figure 1. First, a multiresolution analysis is per-
formed by scaling the input image by a factor of 1.2
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Figure 1. Block diagram of the face detection
system.

(Multiresolution Analysis module), for detecting faces
at different scales. This scaling is performed until im-
ages of about 24x24 pixels are obtained. Afterward,
in the Window Extraction module, for each of these
scaled versions of the input image, windows of 24x24
pixels are extracted. The extracted windows are then
further processed by a cascade of real Adaboost filters
(10 stages). Each of these filters feed back information,
the result of the filter processing (confidence value of
been a face) to the Window Extraction module. This
information is employed for deciding if the image, in
the corresponding window position, needs to be fur-
ther processed in a lower scale (resolution) or not.

When a window is classified as non-face by any of
the filters non-further processing is done. In the oppo-
site case, the window goes further in the cascade. A
window is classified as face if and only if all filters of the
cascade classify it as a face, i.e. it passes through all
cascade filters. After all selected windows are processed
and classified as faces or non-faces, in the Overlapping
Detection Processing module the face windows are an-
alyzed and fused (normally a face can be detected at
different scales) for determining the size and position
of the final detections. In this module, the confidence
values associated to the detections are used for deleting
or fusing detections.

In this article the parameters of the Window Ex-
traction and Overlapping Detection Processing mod-
ules are optimized. It is important to notice that this
optimization is done after finishing the training of the
filter cascade.



3.2. Multiresolution and Parameters’ Optimiza-
tion

As already mentioned, images are analyzed in differ-
ent resolutions by scaling them by a factor of 1.2, until
images of about 24×24 pixels are obtained. Each level
of the pyramid is analyzed in three stages, in a coarse
to fine manner (this heuristic was proposed in [4]). In
a first stage (s1) only image positions on a sparse grid
with grid step step1=6 are used for extracting windows.
In this way only about 2.8% of all possible positions
are evaluated. Each grid position with a score value
(the confidence value feed back by the filters) below a
threshold ths1 is a starting point for a local refinement
of the search. In the second stage (s2) a finer structured
grid around each starting point of the coarse grid is
evaluated, using a grid step step2=3. Then, each grid
position with a score value below a threshold ths2 is
evaluated in the third stage (s3) using a 3 × 3 neigh-
borhood. The speed up of the process is controlled by
the threshold’s values ths1 and ths2. Higher threshold’s
values means higher processing speed (less fine scales
are evaluated), but lower detection rates (many true
faces can be lost).

When analyzing and fusing face windows in the
Overlapping Detection Processing module two other
threshold’s values needs to be employed. On the one
hand, if the number of overlapped face windows in a
given position is larger than thnum, then they are con-
sidered as a true detection and fused. On the other
hand, if the detection volume of the overlapped face
windows in a given position is larger than thvol, then
they are considered as a true detection and fused. The
detection volume is defined as the sum of all confi-
dences values corresponding to the overlapped win-
dows.

Considering that a cascade with 10 filters is imple-
mented, altogether 22 parameters are to be adjusted
by the EMO. Each filter has associated two parame-
ters, ths1 and ths2. The remaining two parameters are
thsum and thvol.

4. Results

The SGAf2r algorithm was applied to the parameter
setting of the face detection system. In the system, 22
parameters were identified that control the selection
of the masks in the cascade. After selection of the
parameters, three objectives were computed:

1. False Positive Rate: Relative number of non-
faces that the system has wrongly output a posi-
tive face detection.

Run 0 Run 1 Run 2 Run 3 Run 4
N 40 20 20 20 40
µm 0.1 0.05 0.05 0.05 0.05
µc 0.4 0.9 0.9 0.9 0.9
p 0.2 0.3 0.1 0.9 0.9

Table 1. Five setting for SGA f2r algorithm: N :
Population size; µm: mutation rate; µc: cross-
over rate; p: elitism ratio.

2. False Negative Rate: Relative number of face
the system did not detect as face.

3. Number of Features: Number of features that
were taken into account for the face detection de-
cision. This is related to the number of filter being
applied.

Of course, these objectives are in conflict: the fewer
objective 3, the more the chance is increasing to base
the face detection decision on an insufficient data eval-
uation, thus increasing FPR and FNR. Between FPR
and FNR the existence of a trade-off is a well-known
fact.

Each of the 22 parameters was encoded as an integer
using 8 bit. Then, SGAf2r was trained with a suite of
20 images from the MIT and CMU dataset [12] (con-
taining 191 faces) and various parameter settings over
200 generations. Table 1 lists some of the choices that
were explored. Run 0 is a highly explorative setup:
mutation rate is comparable high, population size is
larger, and elitism, i.e. the relative number of parent
individuals taken unmodified into the next generation
(sorted by their ranking values in the parent popula-
tion), is small. Compared to run 0, run 1 is using the
cross-over operator more often to generate new indi-
viduals, and this ratio is even more increased in run 2.
Run 3 and run 4 are more conservative, with an elitism
of 0.9. Here, run 4 is using the larger population (40
individuals).

All runs yield comparable Pareto sets (see fig. 2
for an example). These Pareto fronts demonstrate the
conflict in the objectives, and reveal their seemingly
convex shape. Run 4 seems to provide the best cover-
age of the Pareto front. An easy analysis showed that
various parameter settings for the points of the Pareto
fronts already improve the formerly-used manual set-
up of the face detection system. Majorly, a slight re-
duction in the number of features was achieved, while
the FNR could be reduced without increasing the FPR.

For further analysing the result (and providing an
attempt to the tricky question about the true achieve-



ment here) we have analyzed the run-time behaviour
of the algorithm runs. Fig. 3 gives the changes of the
crowding measure over the generations. The crowding
measure was computed in a manner similar to the one
used in the NSGA-II algorithm [1]: Given is a set P

of n data points Pi of m dimensions Pij each. Each
Pi for each dimension j has a closest neighboring data
point P l

i and P r
i to its left and right according to the

j-th coordinate values of all data points (these data
points may differ for different dimensions). The points
on the ”border”, i.e. having the smallest or largest
value in a dimension, are ignored in the computation.
The crowding measure is computed as

c(P ) =
∑

i

∏

j

(P r
ij − P l

ij) (5)

The crowding measure gives an empirical measure for
the progress of the Pareto set of the algorithm (as
stored in the archive) towards the Pareto front of the
objective space. Generally, a larger value indicates
lower crowding and better diversification of the algo-
rithm on the Pareto front. If the measure drops during
the evolution, this could be seen as an indicator for
”gap filling” between the non-dominated individuals.
If it remains nearly constant, this is an indicator of
progress of the whole front. A jump in the measure
could be seen as the addition of a non-dominated out-
lier to the archive.

Figure 2. Pareto front of a run of SGA f2r algo-
rithm on the face detector.

Comparing fig. 3 with the corresponding increase in
size of the archive, as shown in fig. 4, the best per-
formance of the setup for run 0, i.e. the highly ex-
plorative variant, can be seen clearly: while collecting
more non-dominated individuals, the crowding mea-
sure is kept nearly constant. We also see on the oppo-
site that the conservative version run 4 is increasing
the archive even more, but the crowding measure is
becoming smaller. This version more and more fills

the gaps between the already found non-dominated
points. A smaller population (run 3) helps to increase
the crowding measure. Worst are the variants employ-
ing cross-over more often than mutation (run 1 and
run 2) showing lower sampling at the Pareto front,
and also a lower crowding measure.

Figure 3. Evolution of crowding measure
(same as used in NSGA-II) shows the intrinsic
crowding control of SGA f2r algorithm.

Figure 4. Evolution of archive sizes during the
200 generations.

Jumps in the crowding measure are more common
up to generation 100, together with a larger growth
in the archive size. After generation 100, the archives
start to grow more slowly, while the crowding measures
tend to be more constant. Thus, the initial explorative
stage can be distinguished from a slow convergence
against the true Pareto front (at least the one acces-
sible by the algorithm) later on. Given this, and the
convex shape of the found Pareto sets, the task of im-
proving the face detector by means of multi-objective
optimization shows no pecularities. We may conclude
on a stable convergence against the Pareto front of the
face detection system.



5. Conclusions

In this paper we studied the application of evolu-
tionary multi-objective optimization (EMO) to the im-
provement of a face detection system. The considered
face detection system is based on the boosted cascade,
and it analyzes image positions on different scales in
a three-step-procedure. Based on threshold settings,
the algorithm decides whether to continue with the
test on a finer scale at the current position. Thus, the
thresholds for all scales and stages have a major influ-
ence on the performance of the system. Accordingly,
22 thresholds parameters were identified and became
the subject of the evolutionary optimization according
to three objectives: low false positive rate, high de-
tection rate and low processing time. The EMO that
was used in the optimization is an extension of the
Standard Genetic Algorithm to the EMO case by us-
ing Fuzzy Pareto Dominance as a meta-heuristic. The
application of this EMO to the face detection system
was explored and discussed using test images from a
standard face detection benchmark dataset. From the
runtime analysis of the EMO, esp. by using a crowd-
ing measure, and the archive size, it can be concluded
that the algorithm reliably approaches the Pareto set.
The conclusion is based on the following observations:
the Pareto fronts found at different settings of the al-
gorithm parameter appear to be convex and similar
in shape; and the EMO showed clearly an explorative
stage at the beginning, followed by a converging global
approach to the Pareto front. The optimized system
achieves especially improvements in the obtained pro-
cessing speed (by reducing the number of considered
features) and false positives rates.
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