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Abstract

In this paper, a method for the visualization of the
population of an evolutionary multi-objective optimiza-
tion (EMO) algorrithm is presented. The main charac-
teristic of this approach is the preservation of Pareto-
dominance relations among the individuals as good as
possible. It will be shown that in general, a Pareto-
dominance preserving mapping from higher- to lower-
dimensional space does not exist, so the demand to have
as few wrong dominance relations after the mapping as
possible gives an objective in addition to other map-
ping objectives like preserving nearest neighbor rela-
tions. Thus, the mapping itself poses a multi-objective
optimization problem by itself, which is also handled by
an EMO algorithm (NSGA-II in this case). The re-
sulting mappings are shown for the run of a modified
NSGA-II on the 15 objective DTLZ2 problem as an ex-
ample. From such plots, some insights into evolution
dynamics can be obtained.

1 Introduction

By the formulation of more than one optimization
goal, or more than one decision criterion, the true na-
ture of an increasing number of practical problems
can be better reflected. The most common applica-
tion field here is the engineering of design, but other
fields are also gaining more and more advantage by tak-
ing this perspective, for example benchmarking tech-
niques, fault tolerance, scheduling, networking and the
more. This development is accompanied by the provi-
sion of improving techniques to handle such problems,
and among them are the evolutionary multi-objective
optimization algorithms (EMO).

A notable point of the multi-objective optimization

is the higher degree of interactivity required. In con-
trary to classical optimization, where usually a single
“best” point in the search space is solicited, in a typ-
ical multi-objective problem specification, a trade-off
between conflicting objectives exists, and there is more
than one solution. Before, afterward, or during the op-
timization, a “decision maker” has to intervene, since
in a practical approach, only one of the many trade-offs
can be used as a solution. In a typical EMO algorithm,
like NSGA-II, SPEA, PAES, only the set of optima so-
lution (the Pareto-front) is approached, while the final
selection of a single solution is left to the user of the
system, or its developper.

Visualization of the optimum set, so far, assisted the
user of a system for making a final selection or decision
from the Pareto-front. Several techniques have been
developped in the past. The most simple one is the
technique of “parallel lines,” which is in practical use
in the engineering design for decades already. Here,
each line represents one objective by some scale, and
a set of objectives is plotted by setting all points on
all lines to their corresponding values. However, this
is only helpful for the visualization of a small number
of points. Other techniques employ features derived
from the Pareto-front for visualization purposes, often
with a statistical base (Interactive Decision Maps [6],
Hyper-space Diagonal Counting [1], SOM-based [7]).

Such techniques are needed, and useful for the pro-
cessing, once the Pareto-front has been found. How-
ever, before, they are not needed, or even not appli-
cable. So, in this paper, we want to contribute to the
visualization of the search for the Pareto-front by visu-
alizing an evolving population of an EMO algorithm.

On a first glance, this seem to be an easy task, with
a lot of background already existing. As a dataset
in a higher dimensional space, classical methods of
mapping into lower-dimensional spaces like Sammons



mapping can be used to map the elements of an ap-
proximated Pareto-front into 2D- or 3D-space. Here,
we object that such a mapping is not specific for the
mapping of a Pareto-front, as it does not care for the
preservation of the underlying Pareto-dominance rela-
tion among points in the high-dimensional space.

Several other problems are related to such an ap-
proach. One is the rapdidly decreasing number of
Pareto-dominated points with increasing number of ob-
jectives [4]. From 5 or 8 objectives onward, the con-
cept of Pareto-dominance seems to be lesser suitable
to grasp the meaning of “better” in a way that can
be employed in a heuristic search algorithm like any
EMO. The second point is, and this will be shown in
this paper, that there is no general Pareto-dominance
preserving mapping from a higher-dimensional space
to a lower-dimensional space. This brings, as a third
point, the additional need for handling trade-offs in the
mapping itself.

Based on this considerations, we are proposing a
two-stage mapping of a higher-dimensional data set.
First stage is the mapping of the Pareto-set (i.e. the
Pareto-front in a multi-objective search problem) to
a Pareto-set in 2D, and the second stage is the map-
ping of the dominated points. The first stage will in-
clude, in some cases, a multi-objective optimization by
itself. Here, we are considering the two objectives low
number of wrong implicit dominance relations (domi-
nances appearing among the mapped points, but not
among the original points), and best represenation of
distances. This will appear as a multi-objective version
of the Traveling Salesman Problem (TSP).

In the next section, we will give the reasoning guid-
ing to these optimization goals in visualization of ap-
proximated Pareto-fronts. Section 3 then will detail
the mapping procedure, section 4 give an example and
also demonstrate, what kind of inference can be done
from this way of visualizing. The paper ends with a
conclusion, and the listing of open problems and fu-
ture tasks.

2 Background

For yielding a Pareto-dominance preserving map-
ping Π of a set Pi ∈ RD1 with i = 1, · · · , N of N
points from a higher dimension D1 to a set of points
pi ∈ RD2 of lower dimension D2 < D1, we would re-
quire the following property:

∀1≤i,j≤N : Pi >D Pj ←→ pi >D pj (1)

where pi = Π(Pi). While such a mapping is easy to
compose in the right-to-left direction (by using any

function Π that is monotone in each argument), the
other direction comes out to be impossible. This is
established by the following theorem.

Theorem 1. If D1 > D2, then there is no Pareto-
dominance preserving mapping of all points of RD1 into
RD2 .

The proof will be given in the appendix. Here, we
just want to scetch the basic idea of the proof. Con-
sider the three points P1 = (1, 2, 3), P2 = (2, 3, 1) and
P3 = (3, 1, 2) from R3 and assume there is a mapping
of these three points into three points p1, p2 and p3

in R2. As indicated by figure 1, in such a mapping,
always one of the three points is located “between”
the two other points (for a more formal specification
of this property see the proof in the appendix). In
the case of the example above, p2 is assumed to be lo-
cated between p1 and p3. What’s essentially making
the Pareto-dominance preserving mapping impossible
is the fact that for a lower dimension, there are de-
pendencies between the dominance relations that do
not need to exist among the original points. In the
given example, for any point in R2 that is dominated
by p1 and p3, it will also be dominated by p2 (the
grey area in fig. 1). However, if we consider the point
(1, 1, 2) from R3, it is actually max-dominated by P1

and P3, and thus it should be mapped into the area
that is dominated by p1 and p3 (again, the grey area
in fig. 1). However, the point (1, 1, 2) is not domi-
nated by P2, but if P2 is mapped between p1 and p3,
then the projection of (1, 1, 2) will be dominated by
p2. Therefore, p2 cannot be located between p1 and
p3. By considering the points (2, 1, 1) and (1, 2, 1) in a
similar manner, it can also be seen that p1 cannot be lo-
cated between p2 and p3, and that p3 cannot be located
between p1 and p2. Together this gives the impossi-
bility to map the Pareto-dominance relations among
the six points (1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 1, 2), (1, 2, 1)
and (2, 1, 1) into R2 in a Pareto-dominance preserving
manner. The proof in the appendix basically gener-
alises this fact to any dimensions.

From this fact, we can see that there is no direct
way of mapping a Pareto-front to a dimension open for
human comprehension (one to three dimensions) in the
way we would like. The only possible way is to keep
the number of wrongly indicated dominance relations
at a minimum.

3 Two-stage visualization procedure

The proposed procedure uses different means of
mapping the dominated and non-dominated elements
of a set. The mapping of the dominated set is following
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Figure 1. The impossibility to project 3D
points into 2D, while preserving Pareto-
dominance. Assume the given constellation
of the mapped points, than it can be seen that
there is no place to map the point (1, 1, 2),
since this point is dominated by (1, 2, 3) and
(3, 1, 2), but not by (2, 3, 1).

two main principles: it is a mapping onto a Pareto-set
in 2D, where variations can be used to visualize char-
acteristics of the high-dimensional data sets; and it is
optimized in a manner that the following mapping of
the dominated points makes less errors, but also fulfills
other optimality criteria of the mapping, like distance
preservation in this case.

The points of the Pareto-set are mapped onto points
on a quarter-circle in the first quadrant, i.e. onto points
(x, y) fulfilling x, y ≥ 0 and x2 + y2 = r2. The dis-
tribution of the points on the quarter-circle, and its
radius r are subject to representing characteristics of
the Pareto-set. In the approach presented here, we
distribute the points according to match their nearest-
neighbour distances, and for the radius to reflect the
average point norm (it was considered to derive r from
the hyper-volume [3], but despite of the existence of
faster algorithms, for this purpose the computational
load is still too high to be used in practice).

Once the Pareto-set itself is mapped, the remaining
points, all dominated, are mapped following a greedy
procedure. We use the notion of a minimum point of
a set of points.

Definition 1. Given a set S of N points Pi from Rn.
Then, the minimum point min(S) of S is the point P
with components

P [i] = min
j=1,··· ,N

(Pj [i]) (2)

for i = 1, · · · , n.

For short, any dominated point is mapped to the
minimum point of the mappings of all points of the

Pareto-front, by which it is dominated. This assign-
ment can do some errors due to what we call implicit
dominance: any Pareto-set in 2D is equivalent to an
ordering of its points. The point with one objective
lowest, the other highest, comes first with ordering
number 1, and the one with the first objective high-
est, and the other lowest comes last. The points can
be sorted by the one objective increasing, or the other
decreasing. So, if there is a point that is dominated
by two points A and B in the original space, and A
and B gets mapped to points a and b with the or-
dering numbers i and j respectively, then in 2D, the
point will be also dominated by all points with order-
ing numbers between i and j. This is not necessarily
the case in the original space. The genral impossibil-
ity of a Pareto-dominance preserving mapping is based
on the fact that wrong implicit dominances can never
be avoided in general. However, different orderings oft
the mapped points may result in different number of
wrong implicite dominances, including also making no
such error.

Taking this as an objective, the first stage mapping
can also be considered as a multi-objective optimiza-
tion problem, which is a multi-objective version of the
Euclidian-TSP:

Given a set of n non-dominated points Pi that is
mapped to a set of non-dominated points pi in two-
dimensional Euclidian space, and be p(i) the point
among the pi with the i-th highest first component (or
(n − i)-th lowest second component). There is also a
set of dominated points Dl. The mapping i→ (i) is a
permutation Γ of the set (1, 2, · · · , n). With d(Pi, Pj)
we denote the Euclidian distance between the points
Pi and Pj . Then, the search is for a permutation Γ
minimizing the following objectives:

O1(Γ) =
n−1∑
i=1

d(P(i), P(i+1)) (3)

O2(Γ) = ||{k | ∃1 ≤ i < k < j ≤ n, Dl with (4)
Pi >D Dl, Pj > Dl but notPk >D Dl}||

After this overview, the steps in more detail.

1. Map the set of points (e.g. population of an
EMO algorithm) by some suitable monotone and
component-wise transfer function into the set of
points Qi

1. Q is decomposed into a set of non-
dominated points Pi and a set of dominated points
Di.

1This in case that the initial data range is complicating the
direct visualization



2. Compute r as the average norm of the Pi, multiply
by some scaling factor.

3. Find a permutation Γ for the ordering of the points
Pi by multi-objective optimization for minimizing
the two objectives given by eqns. (3) and (4).

4. Decide on a small border offset angle δ and dis-
tribute points pi on the quarter-circle in the
first quadrant with radius r between the arcs
δ and Π/2 − δ proportionally to the distances
d(P(i), P(i+1)), where (i) is the ordering index
given by the permutation Γ for i. Now, Pi is
mapped onto p(i), and this concludes the first
stage, the mapping of the non-dominated set.

5. For each dominated point Dl, dom(Dl) indi-
cates the subset of all Pi that dominate Dl, and
Π(dom(Dl)) the mappings of these points achieved
in the foregoing step. Then, Dl is mapped onto
the minimum vector of this set min(Π(dom(Dl))).
This concludes the second stage, the mapping of
all dominated points.

4 Example and discussion

In this section, we want to exemplify the procedure
for an optimization of the DTLZ2 function, using an
optimization run of the modified NSGA-II as described
in [5]. Since the optimization itself is not the primary
goal here, and also for space limitations, we will not
give details here. The reader is kindly referenced to [2]
for the DTLZ functions, and to [5] for details of the
used algorithm.

The used algorithm was NSGA-II, with using −ε-
dominance as secondary ranking assignment, and it
was applied to the DTLZ2 problem with 15 objectives,
but only 6 were used for visualization (otherwise, there
would be nearly not a single dominance case). Popula-
tion size of the NSGA-II was 20, and the visualization
went over 2000 generations. For other settings see [5].
Each component x of the objective vector was mapped
to 1− ln(x), to account for the low order of magnitude
of the objective values. For each generation, the radius
was computed as given above, and as scaling factor 200
was used, to generate output images of size 500 × 500
pixels.

The optimization of the permutation Γ was per-
formed by a “standard” NSGA-II, i.e. using crowding
distance as secondary ranking assignment, population
size 10, 100 generations, and the other settings as in
[5]. For encoding a permutation, real-valued sorting
encoding was used, i.e. the individual is a real vector,

generation 42 generation 210

generation 432 generation 763

generation 939 generation 949

Figure 2. Visualization of the parent popu-
lation of a modified NSGA-II on the DTLZ2
problem with 15 objectives for selected gen-
eration numbers.

which encodes a sorting by the sorting of its compo-
nents (e.g. the vector (0.7, 0.4, 0.5) encodes the permu-
tation (1, 3, 2) of (1, 2, 3)). This optimization was only
initiated, when there were points dominated by more
than one other point. Usually, the optimization was
able to remove all wrong implicit dominances, since
the number of dominated points is usually small.

Some plots generated this way are shown in fig. 2.
These plots also show typical patterns that often ap-
pear in such plots. The red circles indicates the non-
dominated elements, the blue the dominated ones.
Blue circles “behind” red ones are points that are only
dominated by one element of the approximated Pareto-
front. The connections between red and blue circles in-
dicates dominance relations. Note that usually, not all
20 points are visible, since the mapping often projects
points onto the same position. The plot of generation
42 shows the situation shortly after initialization, the
average norm is still small. A pattern like in the plot
of generation 210 is often appearing in the evolution: a
single point dominates the reminder of the population,
but the progress in average norm (or any other indi-
cator) is usually small. Generation 432 gives a more
complex dominance pattern. Often, the appearance of



such patterns for a few generations is followed by an
increase in the radius, while the situations shown in the
plots for generations 763 and 939, where nearly all the
population is on the Pareto-front of the population, are
usually followed by a loss in average norm. The plot
of the lower right subfigure for generation 949 shows
that the radius has decreased 10 generations after the
whole population was on the Pareto-front.

Figure 3 also shows the effect of the optimization.
Subfigure (a) shows the plot of generation 1572 with-
out optimization, subfigure (b) after optimization. The
structure of the dominance relations among the indi-
viduals has remarkably changed. But in general it has
to be said that a pattern like the one for generation 210
in fig. 2 is much more pre-dominant than dominance-
rich patterns.

5 Conclusions

In this paper, the visualization of the population
of an evolutionary multi-objective optimization algo-
rithm (EMOA) was studied. The main goal was to
have a visualization that gives insight into the Pareto-
dominance relations among the individuals. It could be
shown that in general, there is no Pareto-dominance
preserving mapping from a higher-dimensional space
to a lower-dimensional space. This is due to the ap-
pearance of wrong implicit dominance relations in the
lower-dimensional space that are not present among
the mapped points. Thus, the mapping of a popula-
tion into a visual dimension like 2D requires some kind
of trade-off, to have the mapping reflecting the distance
relations among the individuals as good as possible, but
also avoiding such wrong implicit dominances as much
as possible. A procedure for visualizing a population
was proposed, where this trade-off is solved by another
multi-objective optimization algorithm. The resulting
visualization procedure comes out to provide insight
into the run of an EMOA, exemplified by DTLZ2 op-
timization with a modified NSGA-II.

Future work will focus on the employment of further
characteristics of the plots, like size, shape and color
of the circles, and shape of the mapped Pareto-set. In
the latter case, for example, “bumpiness” could help to
indicate concave parts of the Pareto-set. Also further
work is required to ensure more smooth transitions be-
tween the plots of subsequent generations.
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Figure 3. Example for the correction of the
non-dominated point order in generation
1572. After the rearrangement (b), the figure
shows all dominance relations correctly.
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Appendix

A. Proof of Theorem 1

Here, we are considering the maximization case, and
also assume D1 = D2 + 1. The proof can be applied
to the minimization case in the same manner, and ex-
tended to any dimension greater than D2+1 by adding
a number of constant components to the points that are
used in the proof.

Before we can prove theorem 1, we need the follow-
ing proposition.

Proposition 1. Any set S of (n + 1) points Pi from
Rn contains at least one point Pl that is weakly Pareto-
dominating2 the minimum point of the set3 S − Pl.

Proof. Assume that for a point Pk from S, Pk is
not weakly Pareto-dominating the minimum point of
S − Pk. This means that for at least one index i,
Pk[i] < min(S − Pk)[i]. This also means that for such
an index i, one and only one point Pl can have the
property Pl[i] = min(S)[i]. If the minimum of the i-th
component would appear more than once as the i-th
component of a point from S, then for any Pl and Pk

from S with k 6= l, Pl[i] ≥ min(S − Pk)[i] would hold.
Now consider the following substitution of compo-

nent values: replace the components of each point
by their corresponding component-wise ranking values,
i.e. replace the smallest first component of all points
in the points, where it appears by the value “1,” then

2Note that “weakly” dominating includes equality.
3This gives a definition for what was called to be “between”

the other points before.

replace by “2” all appearances of the second-smallest
first component and so on, and do the same for the
second and all other components, index by index. For
example, if the set of points is P1 = (2, 8), P2 = (3, 6)
and P3 = (4, 4), then it will be replaced by the set of
points (1, 3), (2, 2) and (3, 1). Now, according to the re-
mark given at the beginning of the proof, from the set
(1, 2, · · · , n), we remove all indices, where a “1” is ap-
pearing more than once and restrict our attention only
to indices, where “1” is appearing exactly once. Since
there are maximal n indices remaining after exclud-
ing double occurrences of minima, but (n + 1) points,
there must be at least one point that does not contain
a “1” at one of the remaining index positions. Each of
these points than will not have the minimum compo-
nent alone anywhere and thus fulfill the claim of the
corollary. Also note that for any set, where the min-
imum component never appears alone, each point has
the claimed property. This completes the proof of the
proposition.

Now we can proof the theorem by considering a
mapping p = Π(P ) from points P ∈ R(n+1) to points
p ∈ Rn.

Proof. Assume that there is such a Pareto-dominance
preserving mapping Π from R(n+1) to Rn and
consider the following set S of points in R(n+1):
P1 = (1, 2, · · · , n, (n + 1)), P2 = (2, 3, · · · , n, (n +
1), 1), · · · , Pn = ((n+1), 1, 2, · · · , n), or in general form
Pi[j] = (i + j − 1) mod (n + 1), where Pi[j] is the j-
th component of the i-th point. Be pi = Π(Pi) the
Pareto-dominance preserving mapping of the point Pi

to a point pi in Rn. There are (n + 1) points pi now
selected in Rn, thus they fulfill the requirements of
proposition 1, and there is one of them, say pl, which
is weakly dominating the minimum point of the other
points. This means that any point, which is dominated
by all mapped points but pl also has to be dominated
by pl. Since Π was assumed to be Pareto-dominance
preserving, this means that any point dominated by all
points but Pl in R(n+1) is also dominated by Pl.

Now consider the minimum point Q of S−Pl, where
all components besides of component l have the value
“1,” and component l has the value “2” (remember that
always Pi[i] = 1). Obviously, any point of S−Pl domi-
nates Q, but Pl is not dominating Q since its l-th com-
ponent is “1” and thus smaller than the l-th component
of Q, which is “2.” This contradicts with the fact that
the mapping of Pl (weakly) dominates the mapping of
Q, since Q has to be mapped into a region that is domi-
nated by the mappings of all other points, i.e. (weakly)
dominated by their minimum point. Therefore, such a
mapping cannot exist.


