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Abstract

This paper presents the Pareto-Box problem for mod-
elling evolutionary multi-objective search. The problem
is to find the Pareto set of randomly selected points in the
unit hypercube. While the Pareto set itself is only com-
prised of the point 0, this problem allows for a complete
analysis of random search and demonstrates the fact that
with increasing number of objectives, the probability of
finding a dominated vector is decreasing exponentially.
Since most nowadays evolutionary multi-objective opti-
mization algorithms rely on the existence of dominated
individuals, they show poor performance on this prob-
lem. However, the fuzzification of the Pareto-dominance
is an example for an approach that does not need domi-
nated individuals, thus it is able to solve the Pareto-Box
problem even for a higher number of objectives.

1 Introduction

In multiobjective optimization, the optimization goal
is given by more than one objective to be extreme. For-
mally, given a domain as subset of Rn, there are assigned
m functions f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn). Usually,
there is not a single optimum but rather the so-called
PARETO set ofnon-dominated solutions.

Evolutionary Computation (EC) has been shown to
be a powerful technique for multi-objective optimiza-
tion [1][2][3] (EMO - Evolutionary Multi-Objective Op-
timization). This biologically inspired methodology of-
fers both flexibility in goal specification and good per-
formance in multimodal, nonlinear search spaces.

If we want to solve a highly complex multi-objective
optimization problem, we might select one of the best
ranked evolutionary approaches reviewed in the litera-
ture, like NSGA-II [4] or SPEA2 [5] and hopefully start
reaching good results quickly. Sadly, that will be rarely
the case when we face real-world problems with high
number of objectives. Usually, the different algorithms
are compared by measuring their performance indices in
difficult test searches [1][2][3][6]. However, most of the
benchmarks in the literature do not consider problems
with high number of objectives. Moreover, very com-

plex test functions should not be the only reference for
the design of new approaches, as they prevent us from
keeping track of the populations dynamics unambigu-
ously (as already stated by Coello in [2]). In order to
design a faster PARETO-dominance-based EC technique,
we need an ”easy” multi-objective test function that al-
lows us to observe the search progress and that is yet
easily scalable to higher number of objectives as well.
The PARETO-Box Problem, which will be presented and
studied in this paper, unifies these crucial properties. It
will help us to know more about how the PARETO-front
is searched for in EMO, and to measure the progress
of the novel Fuzzy PARETO Dominance-Driven Genetic
Algorithm (FDD-GA) approach in search problems with
higher number of objectives. In the following section,
we will introduce the PARETO-Box problem and its anal-
ysis for random search. These results will be used in an
exemplary manner to study the dynamics of EMOs in
section 3.

2 The Pareto-Box Problem

Given are m uniformly randomly selectedn-
dimensional pointsPi in the n-dimensional unit hyper-
cube (1≤ i ≤m), with coordinatesPi j (1≤ j ≤ n). Thus,
for eachPi j we have 0≤ Pi j ≤ 1. The problem we state
is:

PARETO-Box Problem:What is the expectation value
for the size of the PARETO set of these points?

Here, we use the minimum version of PARETO dom-
inance, so for twon-dimensional vectorsa = (ai) and
b = (bi) it is said thata dominatesb (written asa≺ b) if
and only if

∀ i : ai ≤ bi , ∧ ∃ j : a j < b j (1≤ i, j ≤ n) (1)

For a setM of points, its PARETO setP(M) is the subset
for which none of its elements is dominated by any ele-
ment ofM. The PARETO set of the complete unit hyper-
cube contains only one element, the point 0. The random
sampling represents a random search in the unit hyper-
cube, thus we are also going to answer the question if



random search can find the PARETO set of the unit hy-
percube.

Obviously, the PARETO set of this problem is not
hard to find, and there is also no conflict in the objec-
tives. However, the following analysis will show that it
is a hard problem for multi-objective optimization, once
the dimensionn of the problem is increased. More-
over, this problems allows for a precise analysis of the
progress of algorithmic search, including the approach
to the PARETO front and the entering of concave regions
of the PARETO front.

In the following,em(n) denotes the expectation value
for the size of the PARETO set ofm randomly selected
points in then-dimensional unit hypercube. Then, the
following theorems hold:

Theorem 1. Given are m randomly selected points in
the n-dimensional hypercube. For the expectation value
of the size of thePARETO set of these m points we have
the recursive relation:

e1(n) = 1 (2)

em(1) = 1

em(n) = em−1(n)+
1
m

em(n−1) (n,m≥ 2)

Theorem 2. The expectation value for the size of the
PARETO set of m≥ 1 randomly selected points in the
n-dimensional hypercube (n≥ 1) is

em(n) =
m

∑
k=1

(−1)k+1

kn−1

(
m
k

)
(3)

Due to space limitations, the proofs of these theorems
can not be given here.

Theorems 1 and 2 allow for the specification of the
limiting behaviour of the expectation values for increas-
ing number of points and increasing dimensions. This is
stated in the following central theorem.

Theorem 3. For fixed dimension n> 1 and the number
of points m→ ∞, the expectation value em(n) → ∞, the
ratio of the non-dominated points em(n)/m→ 0 and for
fixed m> 1 and dimension n→ ∞ it holds em(n)→m.

Proof. We see that

em(2) =
m

∑
k=1

1
k

= 1+
1
2

+
1
3

+
1
4

+ . . .+
1
m

(4)

which is the harmonic series and known to be diver-
gent. Now, eq. (3) shows that forn > 2 alwaysem(n)≥
em(n− 1) ≥ . . . ≥ em(2), so for m→ ∞ em(n) → ∞ as

well. From the corresponding property of the harmonic
series,em(n)/m→ 0 for m→ ∞ can be seen in a similar
manner.

On the other hand, ifm> 1 is fixed, all terms in eq. (3)
but the one fork = 1 will go to 0 forn→∞, and the term
for k = 1 itself computes tom. So, it is easy to see that
em(n)→m for n→ ∞.

We can express this result as follows: for increasing
number of sample points in the hypercube, the number
of non-dominated points will also increase, and never
”shrink” to the PARETO set of the hypercube, which only
contains the point 0. So, random search will not solve the
problem to find the PARETO set of the hypercube in any
dimension.

For increasing dimension, it will become more and
more unlikely to findany dominated point in a popu-
lation of random sampling points. In fact, the probabil-
ity falls exponentially. The PARETO set ofm points will
contain nearly allm points.

We conclude this section by providing some special
results:

(m,2) : em(2) = ∑m
k=1

1
k

(2,n) : e2(n) = 2− 1
2n−1

(3,n) : e3(n) = 3− 3
2n−1 + 1

3n−1

(4,n) : e4(n) = 4− 6
2n−1 + 4

3n−1 − 1
4n−1

3 EMO Analysis

The remarkable point on the PARETO-Box problem is
that it establishes the fact that the probability of finding
dominated points in higher dimensions (i.e. increasing
number of objectives) is falling exponentially with the
dimension of the problem. Having a look on most promi-
nent EMO algorithms like NSGA-II [5], SPEA2 [4] or
PESA [7], it can be seen that they all need dominated
points to perform their processing steps. For still yield-
ing dominated points in the domain of higher number
of objectives, these algorithms need an exponetially in-
creasingsearch effort, be it by increasing the population
size, or be it by increasing the number of generations.

Recently, the fuzzification of the PARETO dominance
relation has been proposed [8], and a corresponding
EMO has been presented. It will be shortly recalled here
(see [9] for an alternative approach to introduce fuzzy
logic in EMO). The underlying generic fuzzy ranking
scheme for a setSof multivariate data (vectors)~ai with
real-valued componentsai j and 1≤ i ≤N is based on the
provision of acomparison function fx(y) : R×R→ [0,1]
and a T-norm. Then, the following two steps are per-
formed:



1. We compute thecomparison valuesfor any two
vectors~ai = (aik) and ~a j = (a jk) by c~ai (~a j) =
T( faik(a jk) |k = 1, . . . ,N) with N the number of
components of each vector.

2. We compute theranking valuesfor any element~ai

of Sby rS(~ai) = max[c~ai (~a j)| j 6= i].

Then, we consider vectors with lower numerical rank-
ing values to be on a higher ranking position. For step
2, instead of max the min operator can be used as well,
depending on the ranking to be favoured in increasing or
decreasing order.

When using the comparison function bounded divi-
sion and the algebraic (or product) norm as T-norm,
the ranking scheme fulfills several useful properties like
scale-independency in the data. The fuzzification of
PARETO dominance relation can be written then as fol-
lows: It is said that vector~a dominates vector~b by de-
greeµa with

µa(~a,~b) = ∏i min(ai ,bi)
∏i ai

(5)

and that vector~a is dominated by vector~b at degreeµp

with

µp(~a,~b) = ∏i min(ai ,bi)
∏i bi

(6)

For~a PARETO-dominating~b, µa(~a,~b) = 1 andµp(~b,~a) =
1, butµp(~a,~b) < 1 andµa(~b,~a) < 1. Figure 1 gives a nu-
merical example for the fuzzy PARETO dominance con-
sidered here.
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Fig. 1. Definition of Fuzzy-PARETO-Dominance. Here,u
dominatesv by degree 0.1 · 0.2/0.1 · 0.9 = 0.2̄ and is
dominated byv by degree 0.1·0.2/0.7·0.2≈ 0.143.

The advantage of the FPD is that the problem of miss-
ing dominated points does not matter. This will be
demonstrated by using the PARETO-Box problem. We
also provide here a (Fuzzy-Dominance-Driven) FDD al-
gorithm, a Genetic Algorithm (GA) variant that employs
the FPD ordering of fitness values (represented as vec-
tors in case of multiobjective optimization) for defining

selection operators (see [10] for more details). As for
nearly all newer EMOs, it also adds anarchive for stor-
ing non-dominated individuals over the whole run of the
algorithm.
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Fig. 2. Performances of NSGA-II and FDD-GA for the
PARETO-Box problem.

Figure 2 compares the performance of a comparable
set-up of NSGA-II and FDD-GA on the PARETO-Box
problem for dimensionn = 20. The NSGA-II imple-
mentation strictly followed [4]. For both algorithms, the
population size was 10, and 200 generations were per-
formed. Both algorithm used the same mutation proba-
bility and strength of 0.1. The selection scheme of FDD-
GA was adapted due to having a known co-domain of
the ranking values (aka fitness values). Tournament se-
lection was performed using ln−r i (with r i the ranking
values) as shared fitness values, and it was only selected
among the non-dominated individuals. If all individu-
als got the same ranking values, it was randomly se-
lected. The plot shows the size of the archive over the
number of sample points (i.e. calls of the objective func-
tions). Also given is the (numerically estimated) size
of the PARETO-set for random sampling, and the total
number of individuals (dominated and non-dominated).
As established by Theorem 3, for random search the size
of the PARETO set is close to the total number of points.
However, also NSGA-II runs close to this curve, quali-
fying this search as more or less random as well. This
is obvious from the fact that the probability of finding a
dominated individual by applying randomized operators
(mutation, crossover) is low.

For FDD-GA, we clearly see that even for dimension
20 it is able to find the single optimum of the PARETO-
Box problem, and also stays strongly below the curve
of random search all the time. To make this behaviour
more clear, we considered the p.d.f. of the ranking val-



ues within a randomly created population (see fig. 3).
This plot was obtained by 100 times creating a set of 20
random vector with 100 components from[0,1]. Then,
among these 20 vectors the ranking valuesr i were com-
puted, and the intervall frequencies for− ln r i were de-
rived. Thus, we can model the handling of randomly se-
lected points by the FPD ranking scheme (as it happens
when applied to the PARETO-Box problem). The distri-
bution has a tail at the sider of smaller ranking values, so
roulette-wheel selection will acknowledge the fact that
such individuals gradually perform better (with respect
to PARETO-dominance). Such a behaviour can not be
achieved when an EMO is relying on the presence of
dominated individuals alone.
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Fig. 3. Distribution of ranking values in FDD-GA algorithm.

It has to be noted (but can not be detailed here) that
nevertheless NSGA-II, in this set-up, is also finding the
optimum up to a problem dimension of 8. In low dimen-
sions (2-3) the FDD-GA is also outperformed by NSGA-
II.
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