
1

A Neural Network that uses Evolutionary
Learning

Mario K�oppen, Martin Teunis, Bertram Nickolay
Abstract|This paper proposes a new neural architecture
(Nessy) which uses evolutionary optimization for learning.
The architecture, the outline of its evolutionary algorithm
and the learning laws are given. Nessy is based on sev-
eral modi�cations of the multilayer backpropagation neural
network. The neurons represent genes of evolutionary opti-
mization, refered to as solutions. Weights represent proba-
bilities and are used for selectioning. The training value of
the output layer is set to Zero, the theoretical limit of ev-
ery cost-oriented optimization, and the crossover operator
is replaced by a transduction operator. Mutation is used as
usual. Nessy algorithm can be characterized as individual
evolutionary algorithm, but as a neural network too. It was
designed for image processing applications. A short example
is presented, where the discriminative feature of two images
is succesfully detected by the proposed evolutionary neural
network.

Keywords|Neural Learning, Evolutionary Learning Neu-
ral Networks, Optimization, Image Processing.

I. Introduction

T
HE combination of neural networks and evolutionary
computation has been intensively researched in the

past years. The main goal of these studies was to adapt
the topology of a neural network by a genetic algorithm
(GA) that encodes a neural network structure into an in-
dividual gene. To name a few of these works: [1], [2] and
[3]. The results of these studies are encouraging enough to
consider these Neuro-GA systems as a reliable approach for
the neural network design. However, this approach o�ers
some disadvantages and narrows the application �elds of
neural networks. One thing to consider is the use of the
neural network training or generalization error as a �tness
measure for the individual neural network. This prevents
from the estimation of the capabilities of a neural network
due to re�ned learning strategies. Also, Neuro-GA requires
a complicated and time consuming data management. It
factorizes the e�ort to adapt a population of individual
genes with the e�ort to train a neural network.

One key idea to overcome these di�culties is to break
up the whole learning task into smaller parts and synthe-
size the neural network from its well-adapted components
([4]). This di�ers from Neuro-GA in one important aspect:
the neural network is not only taken as an individual of a
GA, but the GA is modi�ed for the spezial purpose of neu-
ral network structural adaptation. Another work from the
same author ([5]) went further and gave a new approach
by the incorporation of evolutionary learning into a neural
M.K�oppen, M. Teunis and B. Nickolay are with the Fraunhofer-
Institute for Production Systems and Design Technology (IPK), Pas-
calstr. 8-9, 10587 Berlin, Germany. E-mail of corresponding author:
mario.koeppen@ipk.fhg.de.
Camera-ready paper for the ICEC'97
network.
In comparison with Neuro-Fuzzy systems this approach

has not been fully considered in recent works. Neuro-
Fuzzy systems modify neural network structures and learn-
ing rules in a manner which results in a fuzzy control per-
formed by these networks. The neural network adopts the
fuzzy inference and applies its learning rule to the adapta-
tion of fuzzy rules and/or membership functions.
This paper proposes a new neural network architecture

which adopts evolutionary learning. The main ideas be-
hind this approach are: base architecture is the multilayer
backpropagation network (MBPN) with three layers, but
its weights are regarded as probabilities; these probabilities
are applied, not only used for calculations; the main design
principle is an individual evolutionary algorithm (IEA), as
de�ned in [5]; and the crossover operator is replaced by a
transduction operator. The proposed architecture (Neural
Evolutionary Strategy System - Nessy) is outlined in sec-
tion II, some properties are explained in section III. To
learn about the learning abilities of Nessy, section IV gives
an optimization for a pattern recognition problem. Finally,
section V o�ers some conclusions and possible modi�ca-
tions.

II. Nessy-Architecture

Nessy is composed of three layers: a solution layer, a
generation layer and an output layer (see �gure 1). The
solution layer maintains a set of solutions for the optimiza-
tion task as in conventional evolutionary learning. Every
solution consists of a gene. The data type of the elements
of a gene is not restricted to bits, but all genes must have
the same size. The generation layer is of the same size as
the number of elements of the gene of a solution. The state
of every neuron of the generation layer is a pointer to a so-
lution of the solution layer. The output layer has only one
neuron, and it holds the training value Zero.
Solution layer and generation layer are fully connected,

every connection has a weight assigned to it. These weights
are regarded as probabilities. The symbol pij stands for the
weight of the connection from the generation layer neu-
ron i to the solution layer neuron j. Generation layer and
the only output neuron are also connected, but no special
weights are assigned.
The interface to the optimization problem, as in conven-

tional evolutionary learning, has three parts: the calcula-
tion of the �tness of a solution, the initialization of the so-
lutions and (optional) management of mutation. Once ini-
tialized, Nessy works autonomously. The outline of Nessy
algorithm is as follows:
1. Every neuron of the generation layer randomly selects

Reference
M. Köppen, M. Teunis, B. Nickolay: A Neural Network that uses Evolutionary Learning. Proc. ICEC'97, Indianapolis, Indiana (1997) 635-639

http://vision.fhg.de/ipk/koeppen


2

Fig. 1. Nessy network
a solution of the solution layer. This random access is
controlled by the probabilities assigned to the weights.
E.g. weight p23 describes the (relative) probability for
generation layer neuron 2 to choose solution 3 for its
state.

2. The �tness of all solutions chosen by the generation
layer neurons are summed and compared with the
training value (Zero). The relative error of every gen-
eration layer neuron is backpropagated.

3. The weights of the solution-generation layer connec-
tions are updated.

4. The solutions of the solution layer are modi�ed by a
transduction operator.

5. The solutions are mutated.

The algorithm in detail:

1. Generation layer neuron i randomly chooses a solu-
tion. Solution j is chosen with probability

pijP

k

pik
: (1)

As a consequence, di�erent generation layer neurons can
select the same solution from the solution layer, depend-
ing from the weights assigned to this solution. During the
adaptation, good solutions get high weights assigned. This
improves the probability of this repetitive choice of good
solutions in the generation layer and hence of transduction
of their genes into the whole population.
2. The backpropagated error of every generation layer
neuron is simply the normalized �tness value of its state,
i.e.

hi =
fiP

k

fk
: (2)

The MBPN is a supervised neural network. The desired
values of the output layer are given as training values and
the neural net adapts its weights in order to compute these
given training values from the input values. However, in
evolutionary algorithms the desired output is unknown. If
the optimization is cost-oriented, i.e. the optimization goal
is to minimize the �tness function, and if it is ensured that
the �tness value is always non-negative, Zero is the theo-
retical limit of the optimization. Depending on the opti-
mization problem this value can be reached or not. But,
by choosing Zero as training value the solutions are forced
to move towards this value and the contradicting learning
goals of the MBPN and an evolutionary algorithm can be
combined.
3. The update of the weights is a little more compli-

cated. To get a learning rule for probabilities we consider
the expectation value of the network output

�f =

P

fjig2Im

P

i

fji
Q

i

piji

Q

i

P

k

pik
(3)

where m stands for the number of generation layer neurons,
I is the set of the �rst n integers (n is the number of solution
layer neurons), consequently, fjig is a set ofm indices in the
range 1 : : :n that represents one possible choice of solutions
of the generation layer neurons. We use gradient learning
rule. The partial derivatives of (3) with respect to the pij
contains expectation values of the generation layer neuron
states. These values are replaced with its actual values.
This results in the learning law

pnewij = poldij � �
fj � gi

O
(4)

where � is the learning rate, gi is the �tness value of the
state of generation layer neuron i and O the state of the
output neuron. The new weights are restricted to the range
[0; 1].
4. The modi�cation of every solution is performed

�tness-proportionately. Every solution compares its �tness
with the �tness of generation layer neuron state i. If the
second one is larger than the solutions' �tness, the solution
takes gene element i of the generation layer neuron state.
This operation replaces the crossover operator of conven-
tional evolutionary learning. Its main task - the creation
of new solutions - is also achieved. This operator was in-
troduced by [6] as implantation operation, later ([7]) it was
referred to as transduction operator and deduced from bac-
terial genetics. A bacteria transducts its genes over the
whole population (infection).
5. Mutation is necessary if the transduction operator is

applied. The whole population would tend to loss their



3

a) normal distributed granulation

b) too high packed granulation

Fig. 2. Images of sand paper
genetic diversity, because successful genes are copied over
unsuccessful ones. Unfortunately, the mutation operation
is problem-dependent. In our case we used integer num-
bers from a limited interval. The mutation is performed by
adding a Gaussian distributed random number to the ac-
tual gene. Two parameters control the mutation: mutation
probability p� and the standard deviation of the Gaussian
distribution ��. Mutation operation is independent from
�tness values.

Altogether, Nessy has one structural parameter (size of
solution layer) and three learning parameters (learning rate
�, mutation probability p� and mutation standard devia-
tion ��).
III. Properties

Nessy is both, a neural network and an evolutionary al-
gorithm. Its a neural network because all calculations are
performed locally, i.e. independent from the state of other
neurons of the same layer, and because it has a graphical
representation. Also, Nessy uses evolutionary learning be-
cause its learning is based on random search, because it
uses probabilities rather than computes with probabilities,
and because solutions are �tness-proportionately modi�ed.

Nessy optimizes the entire population. This is a con-
sequence of its individual evolutionary algorithm, as ex-
plained in [5]. IEA optimizes the population by optimizing
every individual, not the population as a whole. In IEA ev-
ery individual is improved by learning from better ones. In
our approach this is directly achieved by the transduction
operator.

Nessy uses a very simple data management. Its imple-
mentation is straightforward.

IV. Application example

To prove the learning abilities of Nessy we have chosen a
pattern recognition problem. Consider �gure 2. There are
textures of two sand papers shown. The upper one with
normal distributed granulation, the lower one with too high
packed granulation. From its visual properties both images
are hardly to separate. Greyvalue properties like histogram
or co-occurrence matrix are very similar.

One approach for improving the contrast between both
images is to make a greyvalue lookup. For this operation a
lookup table is used with 256 entries with values between
0 and 255. The entries are numbered from 0 to 255. In the
processing image every pixel with greyvalue g is replaced
with the value of entry g in the lookup table. A lot of useful
image processing operations can be characterized by such
a lookup table (e.g. inversion, normalization, linearization,
squaring, bit-clearing, gamma correction). The optimiza-
tion goal is to �nd a lookup table which, applied on both
images, generates a great di�erence in the histogram of
both images. This problem is well-suited for Nessy. Ev-
ery solution is represented by a gene of size 256, one gene
element for one entry.

The initialization of the network is performed by setting
all solutions equal to the identical lookup table (i.e. entry
g has value g). The �tness of a solution is calculated as the
inverse of the mean squared error between both modi�ed
histograms. The size of the solution layer was set to 10.
Di�erent settings for the mutation parameters were tested.
A good choice for the mutation probability was 0:01. The
mutation standard deviation is not a critical parameter.
While a large value slows down the adaptation process, it
is worth for the later stages of the optimization. Finally, a
value of 10 was chosen, which gave a good compromise.

The full run was performed for 30; 000 cycles. The mod-
i�ed images are shown in �gure 3. The di�erence between
both images has increased. Figure 4 shows three lookup
tables generated by di�erent runs. The height of a vertical
bar indicates the replacing greyvalue, the horizontal posi-



4

a) normal distributed granulation

b) too high packed granulation

Fig. 3. Contrast-improved images

Fig. 4. Adapted lookup tables of three di�erent runs and the absolute
di�erence of the greyvalue histograms of both images in �gure 2
tion of the bar indicates the replaced greyvalue (0 on the
left, 255 on the right).

All of them have the plateau in the middle region in
common. The optimal solution maps all greyvalues in the
range 100 to 120 onto the same greyvalue (no matter which
one it is). Most of the remaining greyvalues are "thrown"
to either 0 or 255. If we consider the histogram of abso-
lute di�erences between the histograms of both images (see
bottom of �gure 4), the maximal di�erence between both
images is in that greyvalue range. Hence, the optimization
procedure uses that discriminating property of both images
to improve the contrast between them.
V. Conclusions

A new neural architecture (Nessy) has been proposed
which uses evolutionary learning. The learning ability of
Nessy has been proved with a pattern recognition example.
Nessy is a handsome architecture for the application of
evolutionary computation. No external data management
is necessary.

Nessy can be modi�ed in di�erent ways. Similar to
MBPN, batched learning can be introduced. This im-
proves the reliability of the estimated expectation values
in formula (4). Also, the modi�cation of solutions can be
performed on a group of solutions. This allows the ap-
plication �eld of Nessy to be extended to combinatorial
optimization problems. Another possible modi�cation is
mutation control by learning history. If the �tness values
of the whole population does not change over a longer pe-
riod, the mutation standard deviation should be increased.



5

If the population drifts into the higher �tness regions, it
should be decreased. Future work on Nessy will explore
the e�ects of these modi�cations. Also, Nessy should be
applied to real optimization problems and compared with
other evolutionary learning methods.

References

[1] Takeda, F., et al., A Paper Currency Recognition Method by
a Neural Network Using Masks and Mask Optimization by GA,
Proc. of WWW'94, Nagoya, Japan, 1994, pp. 125-129.

[2] Galic, E., H�ohfeld, M., Improving the Generalization Perfor-

mance of Multi-Layer-Perceptron with Population-Based Incre-

mental Learning, in: Voigt, H.M., Ebeling, W., Rechenberg, I.,
Schwefel, H.-P., (eds.), "Parallel Problem Solving from Nature -
PPSN IV", Lecture Notes in Computer Science 1141, Springer
Verlag, Berlin, Germany, 1996, pp. 740-750.

[3] Stepniewski, S.W., Keane, A.J., Topology Design of Feedforward
Neural Networks by Genetic Algorithm, in: Voigt, H.M., Ebel-
ing, W., Rechenberg, I., Schwefel, H.-P., (eds.), "Parallel Problem
Solving fromNature - PPSN IV", Lecture Notes in Computer Sci-
ence 1141, Springer Verlag, Berlin, Germany, 1996, pp. 771-780.

[4] Zhao, Q., Co-Evolutionary Algorithm: A New Approach to Evo-

lutionary Learning, Proc. of IIZUKA'96, Iizuka, Japan, 1996, pp.
529-523.

[5] Zhao, Q., Higuchi, T., E�cient learning of NN-MLP based on
individual evolutionary algorithm, Neurocomputing 13(1996), 2-
4, pp. 201-215.

[6] Furuhashi, T., Nakaoka, K., Uchikawa, Y., A New Approach

to Genetic Based Machine Learning and an E�cient �nding of

Fuzzy Rules, Proc. of WWW'94, Nagoya, Japan, 1994, pp. 114-
122.

[7] Hashiyama, T., Furuhashi, T., Uchikawa, Y., Design of Fuzzy
Controllers for Semi-Active Suspension Generated through the

Genetic Algorithm, Proc. of ANNES'95, Dunedin, New Zealand,
1995, pp. 166-169.


	I. Introduction
	II. Nessy-Architecture
	III. Properties
	IV. Application example
	V. Conclusions
	References

