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Abstract

This paper presents new image processing operations
based on the Dubois and Prade proposal of a fuzzy triangu-
lar norm. This definition is recalled, and a computational
efficient algorithm is derived for its fast computation. This
procedure also gives a comprehensive model for reason-
ing about the qualitative effects of the Dubois and Prade
fuzzy norm on data. The presented image processing opera-
tions can be considered fuzzy morphology operations. Due
to this fact the application modes for those operations can
be judged. Using Dubois and Prade fuzzy morphology for
background removal on bankcheck images is demonstrated
as an application.

1. Introduction

Triangular norms, which were initially developed for
metrics of statistical spaces [6], have recently found a high
interest in fuzzy theory [4]. Especially they are used for pro-
viding formal definitions of fuzzy set union and intersection
operations. Besides of the standard triangular norms maxi-
mum and minimum, which are used in nearly all cases for
those definitions, other triangular norms could be used as
well. Several definitions have been provided in the past, and
by the so-calledrepresentation theoremof triangular norms
there is a formal way to generate new triangular norms by
the scheme of an already known one.

So far, triangular norms did not find much resonance in
the pattern recognition community. This is an unlucky sit-
uation, since, at least in a formal sense, triangular norms
allow for the formal extension of standard image process-
ing operations and for the definition of new ones as well.
From an image processing laymans point of view, triangu-
lar norms could be used whereever maximum or minimum
formally appears in a definition. In a more mathematical
sense, those norms serve as fusion operations, for which the
standard operations maximum or minimum are just a very

special choice. However, while all triangular norms have to
fulfill the same set of mathematical requirements in order to
be one, each of those norms is an individual one as well.

This paper explores the case of a very special triangular
norm, which was proposed by Dubois and Prade in 1980
[1]. The interesting point is that this norm does not fit into
the representational framework for generating new norms
by means of generator functions. It is an outstanding trian-
gular norm. This will be solicited for image processing as
well. This viewpoint on fuzzy image processing was also
followed in [7], where the exploitation of either fuzzy con-
cept is encouraged, stimulated just by the practical useful-
ness of the derived image processing operations. However,
some reasoning about the effects of the proposed operations
are quite necessary as well, and this will be done in this pa-
per, too.

In the following, in section 2 the definition of the Dubois
and Prade triangular norm (and co-norm) is recalled. This
procedure also serves as a model for reasoning about the
effect of this norm on data, especially when it is used in im-
age processing. The model is explained and demonstrated
on some examples in section 2, too. Then, morphological
operations based on the Dubois and Prade norm are intro-
duced in section 3. Finally, in section 4, the application to
the background removal of bankchecks is shown.

2. The Dubois and Prade fuzzy norm

2.1. Definition

The definition for a fuzzy norm were given by Dubois
and Prade in 1980 [1]. Bea andb two real values from[0; 1].
Then, the triangular normT (a; b) (DPT) and co-norm (or
S-norm)S(a; b) (DPS) are given by the following formulas
(� 2 (0; 1)):

T (a; b) =
ab

max[a; b; �]
(1)



S(a; b) = 1�
(1� a)(1� b)

max[(1� a); (1� b); (1� �)]
(2)

2.2. Computational procedure

For computing the norms of more than two values, the law
of associativity, which has to be fulfilled by each fuzzy
norm, can be used in an iterative manner. Hence, for three
values, the computation could be proceed as follows:

T (a; b; c) = T (T (a; b); c) (3)

In order to get a more efficient procedure for computation
of the DPT and DPS, the following simplifications can be
made:

T (a; b; c) =
T (a; b) � c

max[T (a; b); c; �]

=

ab
max[a;b;�] � c

max[ ab
max[a;b;�]

; c; �]

=
abc

max[a; b; �] �max[ ab
max[a;b;�] ; c; �]

=
abc

max[ab; c �max[a; b; �]; � �max[a; b; �]]

=
abc

max[ab; ac; bc; �a;�b;�c;�2]

=
1

max[ 1
a
; 1
b
; 1
c
; �
ab
; �
ac
; �
bc
; �2

abc
]

We may finish our transformation at that point or con-
sider the following relation:

1

max[ 1
x
]
= min[x] (4)

By applying this realation, the T-norm can be converted in
a more “user-friendly” expression.

T (a; b; c) = min[a; b; c;
ab

�
;
ac

�
;
bc

�
;
abc

�2
] (5)

In the same manner the S-Norm for three elements can be
derived and given as follow.

S(a; b; c) = 1�min[(1� a); (1� b); (1� c); : : :

: : :
(1� a)(1� b)

(1� �)
;
(1� a)(1� c)

(1� �)
; : : :

: : :
(1� b)(1� c)

(1� �)
;
(1� a)(1 � b)(1� c)

(1� �)2
]

Both equations do not consider any sorting of the elements
a; b; c. Doing so, a reduction of the equations for T- or S-
norm can be done by leaving outeach element, which is

greater or smaller resp. and has no effect in determining the
minimum or maximum respectively. Lets assume the ele-
mentsa; b; c are sorted in an incresing order, i.e.a � b � c,
than the expression forT (a; b; c) in equation 5 can be sim-
plified to:

T (a; b; c) = min[a;
ab

�
;
abc

�2
] (6)

For the S-norm the elementsa; b; c has to be sorted in an
decreasing order to reduce equation 5.

S(a; b; c) = 1�min[(1� a);
(1� a)(1 � b)

(1� �)
; : : :

: : :
(1 � a)(1� b)(1� c)

(1 � �)2
]

Doing the same forn valuesa1; a2; : : : ; an, the following
general and closed expressions for the DPT and DPS can be
derived:

T (fang) =

�
a1 : a2 > �

1
�i�1

Qi

k=1 ak : ai < � � ai+1
(7)

(with an+1 = 1) for the T-norm and

S(fang) =

(
a1 : a2 < �

1� 1
(1��)i�1

Qi

k=1 �ak : ai > � � ai+1

(with an+1 = 0 and�ak = 1�ak) for the S-norm of Dubois
and Prade.

2.3. Model

The result in equation 7 gives a means for reasoning
about the effect of Dubois and Prade norm. This is based
on the value of�, the only free parameter of the norm. In
the following, only the T-norm is considered in more de-
tail. The discussion will hold for the S-norm of Dubois and
Prade in a similar manner.

In general,� allows for “tuning” the norm between two
other norms. When� approaches 0, the expression for the
DPT in eq. 1 will be a division ofab by the maximum of
a; b and�, which will obviously not be�. Hence,ab is
divided by the maximum ofa andb, and the result will be
the minimum ofa and b. The same holds forn values:
for � going to 0, the DPT will approach the mimimum of
the values, i.e. their Archimedian norm. For� approaching
1, the norm in eq. 1 will be the product ofa and b, since
max[a; b; �] clearly will choose�. This is just the algebraic
norm ofa andb, and this holds in the general case, too. We
claim: The parameter� tunes the Dubois and Prade T-norm
between the standard Archimedian norm and the algebraic
norm.

For a more comprehensive understanding of the role of
�, consider fig. 1. Assume again that the valuesa1 to an
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Figure 1. The computed value of the Dubois
and Prade norm depends on the intervall of
�.

are sorted in increasing order. Then, the value� will be in
exactly one of the marked intervalls. If� is below the value
of a2, the valuea1 will be computed; when� lies between
a2 anda3, the valuea1a2=� will be computed a.s.f. (note
that the norm is continuously at the intervall borders). Since
e.g. in the second case� � a2, the expressiona1a2=� is
smaller thana1. In general, the value of the Dubois and
Prade T-norm is always smaller or equal to the minimum
of the data values, from which the norm is computed.The
higher�, the smaller the norm.

This gives some implications for the effect of the DPT
on data. Assume e.g. the following cases:

� The values are equally distributed numbers from[0; 1].
Then,� will in most of the cases lie within the same
intervall, hence only similar values are computed. The
noise will be reduced.

� The values are following a gradient, i.e. they are of the
form a1 + k � (an � a1). Then, ifa1 goes from 0 to 1,
the norm values will follow are more steep gradient.

� If all values are very small besides of only a few, the
norm will be an even more smaller value, since� will
fall into the intervall between the small and the large
values.

� If all values are nearly equal, the T-norm values will
also be nearly equal.

This are only some examples, how the model of fig. 1 can
be used to undertsand the effects of norming data values by
the Dubois and Prade fuzzy norm. A similar model exists
for the S-norm, with the data values ranked in decreasing
order. This will be omitted here.

3. Dubois and Prade fuzzy morphology

For using the Dubois and Prade fuzzy norm, morpho-
logical operations are derived from it. At each pixelx
in an grayvalue imageI, a fixed neighborhood is selected
(e.g. the 4- or 8-neighborhood) by a structuring element.
Then, from the grayvalues of the pixel and its neighbouring

pixels, the DPT or DPS are computed. Note that the val-
ues have to be mapped from[0; gmax] to [0; 1] before, and
mapped back after the norm computation.

Such operations can be formally qualified as fuzzy mor-
phology operations [5], since they give replacements for the
infimum and supremum of a set of data, and basic defini-
tions of mathematical morphology are derived from the re-
quirement for an operation to commute with the supremum
or infimum [3]. This can also be justified from the quali-
tative effects given in the last section (reduction of noise,
broadening of dark areas for the Dubois and Prade T-norm,
steepening of gradients). Since fuzzy morphology is an ex-
tension of grayvalue morphology, it is reasonable to use ei-
ther freedom of choice (including the choice of a fuzzy in-
fimum for a fuzzy erosion) to define such operations.

Fig. 2 shows a three times repeated horizontal gradient
with a repeated and superimposed short vertical gradient.
The effect of the Dubois and Prade fuzzy erosion in a 4-
neighborhood can be seen in fig. 2, the effect of the corre-
sponding Dubois and Prade dilation in fig. 2. Obviously,
the horizontal gradients are more steep now. But also this
demonstrates, how the Dubois and Prade morphological op-
erations are able to “blend out” small background structures
within an image, according to a shift in the value of�.
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Figure 2. Dubois and Prade erosion and dila-
tion of image with various values of �.

Finally, fig. 3 demonstrates noise removal by Dubois and
Prade closing (i.e. first dilate, then erode with the same
structuring element). The underlying fuzziness of the op-



eration gives more soft object borders in the result image.

Figure 3. Noise removal by Dubois and Prade
fuzzy opening.

4. Application

The reason for studying the Dubois and Prade norm was
within a more general work on background removal and
handwriting analysis on bankcheck images. The texturing
of the background of e.g. EC checks or traveller checks is
a great problem for the extraction of the handwriting on the
bankcheck, but has to be performed before any further pro-
cessing can be started. In [2], a framework was presented,
which is able to derive general foreground-background sep-
arating procedures on textured images by using genetic pro-
gramming of image processing operations. However, this
framework is as good as the base of image processing oper-
ations provided to the framework. A set of operations capa-
ble of background removal has to be selected.

Figure 4 shows the result of the application of standard
morphology and Dubois and Prade morphology to such a
bankcheck image. The image (a) was opened with stan-
dard grayvalue morphology and dilated afterwards, to ob-
tain the image (b) (using a3 � 3 structuring element), and
it was Dubois and Prade opened with� = 0:8 and dilated
with � = 0:5, using a 4-neighbor structuring element to
obtain image (c). Despite of the interactive setting of rea-
sonable values for� (which may not be suitable for other
bankcheck images), the image (c) clearly shows the ability
of Dubois and Prade morphology to completely remove the
background while preserving a good quality of the hand-
writing. This is due to the effect of removing short gradi-
ents, which was demonstrated above. Such operations are
a valuable addition to the set of basic operations needed
for adaptive textured image processing according to the ap-
proach presented in [2].
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