
Multi-Objective Particle Swarm Optimization by

Fuzzy-Pareto-Dominance Meta-Heuristic

Mario Köppen1, Christian Veenhuis2

1Kyushu Institute of Technology, Dept. Artificial Intelligence,
680-4, Kawazu, Iizuka, Fukuoka 820-8502, Japan

2Fraunhofer IPK, Dept. Security Technology
Pascalstr. 8-9, 10587 Berlin, Germany

E-mail:mkoeppen@ieee.org,veenhuis@ipk.fraunhofer.de

Abstract

This paper introduces a new approach to multi-objective Particle Swarm
Optimization (PSO). The approach is based on the recently proposed
Fuzzy-Pareto-Dominance (FPD) relation. FPD is a generic ranking scheme,
where ranking values are mapped to element vectors of a set. These rank-
ing values are directly computed from the element vectors of the set and
can be used to perform rank operations (e.g. selecting the “largest”) with
the vectors within the given set. FPD can be seen as a paradigm or meta-
heuristic to formally expand single-objective optimization algorithms to
multi-objective optimization algorithms, as long as such vector-sets can
be defined. This was already shown for the Standard Genetic Algorithm.
Here, we explore the application of this concept to PSO, where a swarm
of particles is maintained. The resulting PSOf2r algorithm is studied on a
fundamental optimization problem (so-called Pareto-Box-Problem) where
a complete analysis is possible. The PSOf2r algorithm is shown to handle
the case of a larger number of objectives, and shows similar properties
like the (single-objective) PSO.

1 Introduction

Multi-objective Optimization is still a challenging and stimulating research and
application field for Evolutionary Computation. A multitude of approaches
and discussions on related topics have been provided. Formulating the major
tasks of multi-objective optimization as 1.) find the Pareto front of a given
multi-objective optimization problem; 2.) diversify on the Pareto front; and
3.) qualify the parts of the Pareto front for supporting the computational
instance of a so-called decision maker; EC has been shown to supply a rich and
versatile portfolio of methods to attach to all these tasks.

Recently, the multivariate ranking scheme Fuzzy-Pareto-Dominance (FPD)
was introduced [15]. FPD maps a set of n vectors into the [0, 1]n range, to



so-called ranking values, fulfilling the condition that all dominated vectors are
mapped to 1 and all non-dominated vectors are mapped to values smaller than
1. The smaller the assigned ranking value, the lower the degree of this vector,
to which it is dominated by any other vector of this set.

The procedure is set-based, i.e. the ranking value of a vector depends on the
set, to which it belongs. Adding or removing other elements to or from this set
may influence the numerical value of the ranking value of that vector. However,
given a particular set, the ranking values can be used to apply any ranking- or
sorting-related procedure on the vectors. Thus, it can be used in population-
based algorithms like in evolutionary computation, to extend the notion of rank
to the multi-objective case. In [14] this was shown for the case of the Standard
Genetic Algorithm (SGA). In each generation step, the vector-objectives of the
population are replaced by the ranking values of these vector-objectives in the
set of the individuals. Then, the ranking values are used like fitness values in the
genetic operators, i.e. to base roulette-wheel selection or tournament selection
on them.

It was suspected that the “replace vector-objectives by ranking values” is a
more general paradigm that can be used to make a single-objective population-
based optimization algorithm capable to handle the multi-objective case as well.
The claim came out to be correct for the SGA case. But how is the situation
for other popular algorithms in this field?

There is a growing interest in the application of particle swarm optimization
(PSO) to the handling of multi-objective optimization problems. Since the
initial presentation of the MOPSO algorithm (Multi-Objective Particle Swarm
Optimization) [6], a growing number of proposals about corresponding standard
PSO variations can be found in the literature (see for example [18] [10] [20]
[25] [17] [7] [3] [2] [26] [16] [11] [19] [4] [8] [9] [22] [21]). The recent survey of
Reyes-Sierra and Coello [24] already classifies nearly thirty of such algorithms.
The main difference to a PSO is the notion of “leaders,” which generalizes
the common concept of the global best particle in the standard PSO. This
regards the fact that in multi-objective optimization, usually, there is not a single
optimum but a set of optima solutions. Without the support of an additional,
external “decision maker” instance, the problem statement does not entail any
further selection criteria that can be applied to this set of optima.

MOPSO and all its successors proved to be competent algorithms to handle
the domain of multi-objective optimization, at least for problems posing two or
three conflicting objectives. However, no efforts so far have been devoted to the
handling of a notably larger number of objectives. More and more, problems
with a larger number of objectives are appearing in practice and deserve a deeper
study of the question whether they could be handled by the PSO heuristic as
well.

In this paper, we are going to investigate the application of the above men-
tioned paradigm to the case of Particle Swarm Optimization (PSO). Here, we
are considering a rather canonical way of doing such an extension, by keeping
the single-objective design of the PSO itself unmodified. In section 2, the major
prerequisites for this approach are recalled: the PSO and the FPD equations.



Then, section 3 introduces the multi-objective version of PSO, achieved by in-
corporating the corresponding selection operations (global and local best) on
the FPD ranking values. Then, in section 4 the resulting PSOf2r algorithm is
verified by means of the Pareto-Box-Problem. The paper ends with conclusions
and reference section.

2 Prerequisites

In this section, we recall the major ingredients that are needed to establish
a multi-objective version of the PSO algorithm: the Fuzzy-Pareto-Dominance
paradigm, and the Particle Swarm Optimization.

2.1 Fuzzification of Pareto Dominance Relation

In this section, we are going to study the fuzzification of the Pareto dominance
relation. For two vectors a and b it is said that a (Pareto-)dominates b, if each
component of a is less or equal to the corresponding component of b, and at
least one component is smaller:

a >D b ←→ ∀i(ai ≤ bi) ∧ ∃k(ak < bk). (1)

Note that in a similar manner Pareto dominance can be related to the >-
relation, depending on the application context.

The subset of all vectors of a set M of vectors, which are not dominated by
any other vector of M is the Pareto set (also Pareto front). The Pareto set
for univariate data (single objective) contains just the maximum of the data.

The goal of the fuzzification of this concept is to yield a ”softer” and prac-
tically usable numerical representation of the dominance relation between two
vectors that can be employed in EMO. The issue was studied in more detail in
[15]. This work showed the principal problems related to the specification of
such a degree of dominance. Fuzzy dominance degrees can be computed once
the following two conditions are taken into account:

1. The measure is not symmetric, and between two vectors a and b the two
measures ”a dominates b by degree α” and ”a is dominated by b to degree
α” have to be distinguished. Moreover, if a dominates b, either one mea-
sure is numerically 0 and the other lower-or-equal to 1, or one is greater-
or-equal to 0 and the other 11.

2. The dominance degrees are set-dependent and can not be assigned in an
absolute manner to single vectors alone. We will refer to the set used for
the following computations as the ranking set.

1In [15] it was demonstrated that otherwise the complexity of the corresponding function
specification would grow exponentially, as well as the number of its discontinuities.



A generic fuzzy ranking scheme for a set S of multivariate data (vectors) ai with
real-valued components aij and 1 ≤ i ≤ N can be based on the provision of a
comparison function fx(y) : R× R→ [0, 1] and a T-norm. Then, the following
two steps are performed:

1. We compute the comparison values for any two vectors ai = (aik) and
aj = (ajk) by cai

(aj) = T (faik
(ajk) | k = 1, . . . ,M) with M the number

of components of each vector.

2. We compute the ranking values for any element ai of S by

rS(ai) = max[cai
(aj)|j 6= i].

Then, we consider vectors with lower numerical ranking values to be on a higher
ranking position.

When using the comparison function bounded division and the algebraic (or
product) norm as T-norm, the ranking scheme fulfills several useful properties
like scale-independency in the data. The fuzzification of Pareto dominance
relation can be written then as follows: It is said that vector a dominates vector
b by degree µa with

µa(a, b) =
∏

i min(ai, bi)∏
i ai

(2)

and that vector a is dominated by vector b at degree µp with

µp(a, b) =
∏

i min(ai, bi)∏
i bi

(3)

Note that the subscript a stands for so-to-say “active” and p “passive” dom-
inance. For a Pareto-dominating b, µa(a, b) = 1 and µp(b, a) = 1, but
µp(a, b) < 1 and µa(b, a) < 1. Note that the case of having an ai or bi equal to
0 is handled by the exclusion of the corresponding index in the products in the
numerator and denominator.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO), as introduced by Kennedy and Eberhart
[12] [13], is an optimization algorithm based on swarm theory. The main idea
is to model the flocking of birds flying around a peak in a landscape.

In PSO the birds are substituted by particles and the peak in the landscape
is the peak of a fitness function. The particles are moving through the search
space forming flocks around peaks of fitness functions.

Let Ndim be the dimension of the problem (i.e., the dimension of the search
space RNdim), Npart the number of particles and P the set of particles P =
{P1, ..., PNpart}. Each particle Pi = (xi, vi, li) has a current position in the
search space (xi ∈ RNdim), a velocity (vi ∈ RNdim) and the locally best found
position in history, i.e., the own experience (li ∈ RNdim) of this particle.



In PSO, the set of particles P is initialized at time step t = 0 with randomly
created particles P

(0)
i . The initial li are set to the corresponding initial xi.

Then, for any time step t, the next position x
(t+1)
i and velocity v

(t+1)
i of each

particle P
(t)
i is computed as shown in eqns. (4) and (5).

v
(t+1)
i = w

(t)
I v

(t)
i + wLR0,1(l

(t)
i − x

(t)
i ) +

+wNR0,1(n
(t)
i − x

(t)
i ) (4)

x
(t+1)
i = x

(t)
i + v

(t+1)
i (5)

Here, R0,1 means a random number from [0, 1]. n
(t)
i ∈ RNdim represents the

best found local position of the best neighbor particle at time t. Because there
are several possibilities to define the neighborhood of a particle [13], the best
neighboring particle can be, e.g., the best particle of a pre-defined neighbor-
hood; the best particle of the nearest neighbors according to the distance in
search space; the globally best particle etc. The inertia weight w

(t)
I determines

the influence of the particle’s own velocity, i.e., it represents the confidence of
the particle to its own position (typically wI ∈ [0.1, 1.0]). To yield a better
convergence, this weight is decreased over time [23] [13]. wL is the influence of
the best local position found so far. The influence of the best particle of the
neighborhood is denoted with wN .

To avoid chaotic behavior, the new velocity v
(t+1)
i is clamped to a pre-defined

interval [−Vmax,+Vmax].
The fitness of a particle is determined by a fitness function F : RNdim → R.

If the new position x
(t+1)
i has a better fitness than the best solution found

so far for particle Pi, it is stored in memory as shown in eq. (6) (in case of
minimization).

l
(t+1)
i =

{
x

(t+1)
i , F (x(t+1)

i ) < F (l(t)i )
l
(t)
i , otherwise

(6)

The best solution of the run is found at particle Pb with the best local solution lb.
Best solution lb is always element of the set of all best local solutions {li},∀i ∈
{1, · · · , Npart}. The best fitness value is F (lb) = mini∈{1,··· ,Npart}{F (li)}.

3 Design of the Multi-Objective PSO

As stated in the foregoing, the basic goal is to replace evaluations based on the
ranking of fitness values by corresponding ranking values in suitable sets. In
PSO, we can identify two such ranking based evaluations: the position of the
global best and the position of the local best.

Selection of the Global Best: The first task is rather straightforward
to solve. We select all particle objective vectors as the ranking set, compute
the ranking values of the objectives of all particles in the swarm and select the



one with the lowest ranking value: this is the particle whose objective vector
is dominated by other particle objective vectors together to the lowest degree
(i.e. in the sense of “passive” dominance, using eq. (3)).

Selection of the Local Best: The second task is not straightforward
regarding the choice of the ranking set. In single-objective PSO, the local best
is usually a former position of the particle, having the best fitness value achieved
ever. Using the archive of all former particle positions (i.e. the Pareto set of
all former objective vectors) offers two problems:

1. The computational effort will increase with the number of steps.

2. The fact that non-dominated points are usually in a neighborhood of other
non-dominated points can trap the swarm at some local regions of the
Pareto front.

To resolve these issues, it was considered to store only a fixed number Na of
former objectives in the archive in a queue-like manner (first-in-first-out) and
select the position with the lowest ranking value as local best.

Curl Parameter: Also related to the second problem (crowding of individ-
uals at local regions of the Pareto front) it was advisable to provide a means
to force diversification at the Pareto front. This was achieved by the common
addition of a random term to eq. (3). To each component of the velocity, a ran-
dom number from [−t, t] was added, with t being the so-called curl parameter
(it will be seen later that t causes the swarm to leave straight paths through
lines of the search space composed of non-dominated points).

Otherwise, the processing for the PSO was not changed for achieving the
FPD-driven algorithm PSOf2r (the subscript f2r annotates the use of ranking
values instead of fitness values).

4 Evaluation for the Pareto-Box-Problem

The performance of EMO algorithms is not much known for the case of an
increasing number of objectives, and there is a lack of well-studied benchmark
problems . So far, most of the presented approaches are using two or three
objectives. For more objectives, EMO creators are in good hope that there is
no essential need to change anything on the algorithms for using them in the
context of a larger number of objectives (say 5 to 20). However, a small study on
the, seemingly very simple, Pareto-Box-Problem [14] that equals property space
and objective space (objective function yi = fi(x) = xi) shows that algorithms
that explicitly refer to the presence of Pareto dominance cases among the
individual objective vectors (like the computation of Pareto strength) get in
trouble to achieve their goal (to direct a genetic operator) due to the rapidly
falling probability to have such a Pareto dominance case at all.

The nD-Pareto-Box-Problem is stated as follows. Given are m uniformly
randomly selected n-dimensional points Pi in the n-dimensional unit hyper-
cube (1 ≤ i ≤ m), with coordinates Pij (1 ≤ j ≤ n). Thus, for each Pij we have
0 ≤ Pij ≤ 1. The problem we state is:



Pareto-Box-Problem: What is the expectation value for the size of the Pareto
set of these points?

Obviously, the Pareto set of this problem is not hard to find (it only con-
tains the point 0), and there is also no conflict in the objectives. An analysis
of the Pareto-Box-Problem [14] gives the expectation value of the size of the
Pareto set of m randomly selected values in the n-dimensional unit hyper-
cube as

em(n) =
m∑

k=1

(−1)k+1

kn−1

(
m

k

)
(7)

Taking e.g. n = 20 this gives for m = 1000 randomly selected points in the
hyper-cube an expectation value for the size of the Pareto set of these 1000
points as 999.135. Means roughly only one Pareto dominance case can be
expected in a population of 1000 individuals at all. Obviously, this does not
suffice to base the computations for a genetic operator on it. The expression
for em(n) rapidly approaches m (i.e. only the contribution to the sum for k = 1
differs remarkably from 0 for larger n). This means that for larger number
of objectives the Pareto set of m random vectors is equal to the set of the
vectors itself: there is not a single vector dominated by any other vector in
the set. It comes out that pure reliance on the presence of dominance cases,
posing no major problem in the two- or three-dimensional case, is misleading
for a number of objectives even as ‘low’‘’ as ten or so. The search effort had to
grow exponentially to ensure a sufficiently large number of dominance cases in
the population.

However, the Fuzzy-Pareto-Dominance concept was already shown [14] to
provide a means to overcome this problem. Literally spoken, the gradual dom-
inance relation allows for also taking cases of “close” Pareto dominance into
account, providing e.g. the required selection pressure that the sparse dominance
cases can not provide alone.

Here, we study the FPD as meta-heuristic applied to the PSO and its per-
formance on the Pareto-Box-Problem for increasing number of objectives. In
the following, the parameter settings for PSOf2r, after some experiments, were
chosen as follows:

• Population size Npart was set to 7. It came out that this was sufficient
to solve the studied tasks.

• Inertia weight wI was not experimented with and set to 1.0.

• Weight of the Global Best wN was set to 0.01.

• Weight of the Local Best wL was set to 0.03.

• Maximum Velocity Vmax was set to 0.04.

• Curl t was set to 0.005. Higher values are not advisable in general.



• Local Archive Size Na for selecting the Local Best was set to 10. Any
major influence of this parameter on the performance could not be ob-
served so far.

• Random Creation Method for the initial swarm was chosen as uniform.

• Bounding scheme for handling particles that leave the hyper-cube was
selected as clamping the position values by the hyper-cube bounds.

Note that a stronger influence of the ratio between global and local best weights
was observed in the preliminary experiments, as it is known from PSOs in
general [5].

Figure 1 shows that the PSOf2r algorithm has no problem to approach the
point 0 in the case of lower number of objectives (here n = 4). For larger num-
bers, the search slows down due to a phenomena that can be easily seen and be
understood as a kind of relative Pareto fronts. Figure 2 shows the decay of the
average distances of all particles in each step from the point 0. This figure also
shows the distance values for another multi-objective PSO (Alvarez et al. [1]),
using the same parameters. In the PSO of Alvarez et al., the swarm stores all
non-dominated particle positions in an external archive. During swarm update,
each particle randomly selects its “own” leader among the archive members,
by which it is dominated. If there is no dominating member in the archive
at all, the leader is randomly selected from the whole archive. This gives the
counterpart for the global best position in the PSO algorithm. For the local
best position, the algorithm just updates its own local best position, if the new
position is dominating the former local best position in objective space. The
plot in the figure clearly shows that for 15 objectives, the algorithm is perform-
ing a random search only. The swarm keeps an average distance of about 2
from the origin, which is nearly equal to the expectation value of a randomly
selected point in the unit hyper-cube. This is directly caused by the sparseness
of Pareto dominance, as it was already discussed. Describing the algorithm
in terms of sparse Pareto dominance reads like: the global best is randomly
selected from any position ever visited by the swarm before, and the local best
is always the first position of the particle and never gets updated.
Obviously, in contrary, the PSOf2r algorithm is able to approach the origin.
Three things can be observed here that comes out to be typical for the applica-
tion of PSOf2r.

1. In the global scheme, the algorithm approaches the point 0 more or less
steadily.

2. There are some plateaus, where the PSOf2r gets stuck for a number of
steps before continuing the descent to the origin.

3. The swarm does not come to a halt at the end. This is due to the con-
tinued internal movements of the swarm, even when its being close to 0,
a consequence of keeping the inertia weight constant. It is also a little bit
caused by the clamping of the new position values at 0, since the optimum
is located at the border of the search space.



1 15 30

45 60 75

Figure 1: Iterated PSOf2r steps for the 4D-Pareto-Box-Problem. Particle posi-
tions are displayed as (x, y) = (

√
x2

1 + x2
2,

√
x2

3 + x2
4).

Surely, item 2 can be seen as a counterpart to local optima in the case of single-
objective optimization, but here it is definitely algorithm-dependent. Such “rel-
ative” Pareto fronts, i.e. search-space locations where the swarm can be en-
trapped for a while, are related to cases where the objective vector (which
equals the position in the Pareto-Box-Problem) approaches a vector that has
only components from {0, 1}. This can be better seen in fig. 3 that shows the
probability distribution of swarm particle positions, taken from 30 independent
runs of PSOf2r over 500 steps for the 10D-Pareto-Box-Problem. The position
vectors are displayed as balanced coordinates:

(x, y) =


√√√√ 5∑

i=1

x2
i ,

√√√√ 10∑
i=6

x2
i


The distribution shows a grid-like pattern, where the PSOf2r spends more time
on the nodes of the grid, and is also more often moving along the grid-lines.
Despite of the non-unique mapping of vectors from R15 to R2 involved, this
grid is established from position vectors with some of its components, but not
all, being 0 (i.e. already optimal). A further analysis gives that these relative
Pareto fronts are subsets of the objective space like (in case n = 2) (t, 1 − t)
with t ∈ [0, 0.5] where no point dominates any other, but the ranking values are
increasing for smaller values of t. The dynamics of the swarm gives that the
swarm might start to approach the point (0, 1) instead of (0, 0), and only the
random influence quantified by the curl parameter gives the means to escape
from this doomed track. Without this curl, the swarm might become unable to
leave such relative Pareto fronts.

In the case of increasing dimension, this mechanism seems to become more
and more unable to avoid the entrapment in relative Pareto fronts, as table
1 indicates. Shown is the average number of steps needed to get the swarm



0 200 400 600 800
steps

0

0.5

1

1.5

2

2.5

3

3.5

di
st

an
ce

MOPSO (Alvarez et al.)
PSO_f2r Algorithm

Average Particle Distance to Point Zero
(15 Objectives)

Figure 2: Average distances of the PSOf2r particles from the origin for the
15D-Pareto-Box case over 800 steps. For comparison, the distance values are
also shown for another multi-objective PSO (of Alvarez et al. [1]), which is
using Pareto dominance directly: in a 15-objective search-space, this algorithm
performs like a random search.

within a 0.1 distance to the origin. Despite of the large fluctuation of these
number of steps (given by the additionally provided standard deviation σ, and
the maximum and minimum number found at 20 independent runs) and the
interesting fact that for n = 7 the algorithm performance increases temporarily,
from n = 15 on the search effort increases rapidly. The swarm spends more
and more time in these relative extrema, and the number of these extrema is
increasing exponentially with 2n.

Compared to the study given in [14], the swarm needs an order of magni-
tude larger number of fitness evaluations than the FPD-GA (i.e. the Standard
Genetic Algorithm transformed by the FPD to a multi-objective optimization
algorithm) to approach the point 0, but solves the problem in cases where other
EMOs (exemplified by the most popular NSGA-II) already fails. For FPD-GA,
around 2000 fitness evaluations in the 20-dimensional case with a population
of 10 individuals were reported, as compared to the values in table 1 with a
population size of 7 particles. Given that, we can state the PSOf2r a higher
search space exploration potential but a weaker exploitation. This is known for
single-optimization PSOs for long, so we note the conceptional preservation of
fundamental PSO properties in the multi-objective case when using the FPD
paradigm to define the multi-objective PSO.



0
√

5

√
5

Figure 3: Search space exploration by a PSOf2r applied to the 10D-Pareto-
Box-Problem, 30 runs over 500 steps. The figure shows the particle position
distribution from these 15000 samples in balanced coordinates.

5 Conclusions

Recently, the so-called Fuzzy-Pareto-Dominance (FPD) was proposed as a meta-
heuristic to “convert” population-based single-objective optimization algorithms
to multi-objective optimization algorithms. FPD is a generic ranking scheme,
where ranking values are mapped to element vectors of a set. These ranking
values are directly computed from the element vectors of the set and can be
used to perform rank operations (e.g. selecting the “largest”) with the vectors
within the given set. In this paper, we introduced and explored the application
of this concept to PSO, where a swarm of particles is maintained. The resulting
PSOf2r algorithm was studied on a fundamental optimization problem (so-called
Pareto-Box-Problem) where a complete analysis can be provided. The PSOf2r

algorithm was shown to handle the case of a larger number of objectives, and
shows similar properties like the (single-objective) PSO, as better exploration
than exploitation capability, and local extrema entrapment.

Notable is the identification of a relative Pareto front as a pure consequence
of the algorithm itself. The PSOf2r algorithm can only leave a path leading
to hyper-cube corners by adding small fluctuations to its particle velocities,
controlled by so-called curl parameter (this fluctuation has been introduced for
PSO by other authors as well). The PSOf2r algorithm could be successfully
validated on the Pareto-Box-Problem. However, the intricate influence of all
parameter settings on the performance have to be much more studied, esp. to
handle cases with more than 15 objectives better. An extension of the algorithm
to escape from the identified relative extrema could become necessary. Then,



Table 1: Average number of steps needed to approach the origin within 10% for
the first time, listed for several values of the number of objectives.

dimension average σ min max
2 42.1 19.9 22 111
5 159.4 123.2 50 473
7 133.2 63.2 52 273
10 291.0 124.9 92 592
15 600.9 283.7 276 1410
17 833.6 424.1 403 2154

the algorithm seems to be fit to be applied to real-world cases including multi-
objective combinatorial optimization.

Acknowledgment

A researcher involved in this study has been supported by a JSPS grant.

References

[1] Julio E. Alvarez-Benitez, Richard M. Everson, and Jonathan E. Fieldsend. A
MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts. In Car-
los A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evo-
lutionary Multi-Criterion Optimization. Third International Conference, EMO
2005, pages 459–473, Guanajuato, México, March 2005. Springer. Lecture Notes
in Computer Science Vol. 3410.

[2] Thomas Bartz-Beielstein, Philipp Limbourg, Konstantinos E. Parsopoulos,
Michael N. Vrahatis, Jörn Mehnen, and Karlheinz Schmitt. Particle Swarm Opti-
mizers for Pareto Optimization with Enhanced Archiving Techniques. In Proceed-
ings of the 2003 Congress on Evolutionary Computation (CEC’2003), volume 3,
pages 1780–1787, Canberra, Australia, December 2003. IEEE Press.

[3] U. Baumgartner, Ch. Magele, and W. Renhart. Pareto Optimality and Particle
Swarm Optimization. IEEE Transactions on Magnetics, 40(2):1172–1175, March
2004.

[4] R. Brits, A.P. Engelbrecht, and F. van den Bergh. A Niching Particle Swarm
Optimizer. In Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-Hwan Kim,
and Xin Yao, editors, Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL’02), volume 2, pages 692–696, Orchid Country
Club, Singapore, November 2002. Nanyang Technical University.

[5] M. Clerc. The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimization. In Proc. of IEEE International Conference on
Evolutionary Computation (ICEC’99), 1999, 1999.



[6] Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization. In Congress on Evolutionary
Computation (CEC’2002), volume 2, pages 1051–1056, Piscataway, New Jersey,
May 2002. IEEE Service Center.

[7] Carlos A. Coello Coello, Gregorio Toscano Pulido, and Maximino Salazar
Lechuga. Handling Multiple Objectives With Particle Swarm Optimization. IEEE
Transactions on Evolutionary Computation, 8(3):256–279, June 2004.

[8] Xiaohui Hu and Russell Eberhart. Multiobjective Optimization Using Dynamic
Neighborhood Particle Swarm Optimization. In Congress on Evolutionary Com-
putation (CEC’2002), volume 2, pages 1677–1681, Piscataway, New Jersey, May
2002. IEEE Service Center.

[9] Evan J. Hughes. Multi-Objective Evolutionary Guidance for Swarms. In Congress
on Evolutionary Computation (CEC’2002), volume 2, pages 1127–1132, Piscat-
away, New Jersey, May 2002. IEEE Service Center.

[10] Evan J. Hughes. Swarm Guidance using a Multi-Objective Co-evolutionary On-
Line Evolutionary Algorithm. In 2004 Congress on Evolutionary Computation
(CEC’2004), volume 2, pages 2357–2363, Portland, Oregon, USA, June 2004.
IEEE Service Center.

[11] Xiaohui Hui, Russell C. Eberhart, and Yuhui Shi. Particle Swarm with Extended
Memory for Multiobjective Optimization. In 2003 IEEE Swarm Intelligence Sym-
posium Proceedings, pages 193–197, Indianapolis, Indiana, USA, April 2003. IEEE
Service Center.

[12] J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. In IEEE Inter-
national Conference on Neural Networks, Perth, Australia, IEEE Service Center,
Piscataway, NJ, 1995, 1995.

[13] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

[14] Mario Köppen, Raul Vicente Garcia, and Bertram Nickolay. Fuzzy-pareto-
dominance and its application in evolutionary multi-objective optimization.
In Evolutionary Multi-Criterion Optimization, Third International Conference,
EMO 2005, Guanajuato, Mexico, March 9-11, 2005. Proceedings, LNCS 3410,
pages 399–412. Springer Berlin / Heidelberg, 2005.

[15] Mario Köppen and Raul Vicente Garcia. A fuzzy scheme for the ranking of mul-
tivariate data and its application. In Proceedings of the 2004 Annual Meeting of
the NAFIPS (CD-ROM), pages 140–145, Banff, Alberta, Canada, 2004. NAFIPS.

[16] Xiaodong Li. A Non-dominated Sorting Particle Swarm Optimizer for Multiob-
jective Optimization. In Erick Cantú-Paz et al., editor, Genetic and Evolutionary
Computation—GECCO 2003. Proceedings, Part I, pages 37–48. Springer. Lecture
Notes in Computer Science Vol. 2723, July 2003.

[17] Xiaodong Li. Better Spread and Convergence: Particle Swarm Multiobjective
Optimization Using the Maximin Fitness Function. In Kalyanmoy Deb et al.,
editor, Genetic and Evolutionary Computation–GECCO 2004. Proceedings of the
Genetic and Evolutionary Computation Conference. Part I, pages 117–128, Seat-
tle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes in Computer
Science Vol. 3102.



[18] Mahdi Mahfouf, Min-You Chen, and Derek Arturh Linkens. Adaptive Weighted
Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels.
In Parallel Problem Solving from Nature - PPSN VIII, pages 762–771, Birming-
ham, UK, September 2004. Springer-Verlag. Lecture Notes in Computer Science
Vol. 3242.

[19] Sanaz Mostaghim and Jürgen Teich. Strategies for Finding Good Local Guides in
Multi-objective Particle Swarm Optimization (MOPSO). In 2003 IEEE Swarm
Intelligence Symposium Proceedings, pages 26–33, Indianapolis, Indiana, USA,
April 2003. IEEE Service Center.

[20] Sanaz Mostaghim and Jürgen Teich. Covering Pareto-optimal Fronts by Sub-
swarms in Multi-objective Particle Swarm Optimization. In 2004 Congress on
Evolutionary Computation (CEC’2004), volume 2, pages 1404–1411, Portland,
Oregon, USA, June 2004. IEEE Service Center.

[21] K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimization Method in
Multiobjective Problems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC’2002), pages 603–607, Madrid, Spain, 2002. ACM Press.

[22] Tapabrata Ray and K.M. Liew. A Swarm Metaphor for Multiobjective Design
Optimization. Engineering Optimization, 34(2):141–153, March 2002.

[23] Y.H. Shi and R.C. Eberhart. A Modified Particle Swarm Optimizer. In IEEE In-
ternational Conference on Evolutionary Computation, Anchorage, Alaska, 1998,
1998.

[24] Margarita Reyes Sierra and Carlos A. Coello Coello. Multi-objective particle
swarm optimizers: A survey of the state-of-the-art. International Journal of
Computational Intelligence Research, 2(3):287–308, 2006.

[25] Gregorio Toscano Pulido and Carlos A. Coello Coello. Using Clustering Tech-
niques to Improve the Performance of a Particle Swarm Optimizer. In Kalyan-
moy Deb et al., editor, Genetic and Evolutionary Computation–GECCO 2004.
Proceedings of the Genetic and Evolutionary Computation Conference. Part I,
pages 225–237, Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture
Notes in Computer Science Vol. 3102.

[26] L.B. Zhang, C.G. Zhou, X.H. Liu, Z.Q. Ma, and Y.C. Liang. Solving Multi Objec-
tive Optimization Problems Using Particle Swarm Optimization. In Proceedings
of the 2003 Congress on Evolutionary Computation (CEC’2003), volume 4, pages
2400–2405, Canberra, Australia, December 2003. IEEE Press.


