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Abstract—We present a benchmark for the performance
evaluation of heuristic and meta-heuristic approaches to
fair distribution of indivisible goods. The specific problem
reflected by the benchmark data sets is Wireless Channel
Allocation (WCA), and the approach to fair distribution is
to choose from feasible allocations by the maximum set of
a fairness relation between their corresponding allocation
performances. The effort for exhaustive search for such
maximum sets is rapidly increasing and even problems
with 10 users may already be beyond today’s computing
capabilities. Here we present the results for up to 7 users and
also discuss some general aspects of using fairness relations
in the prescribed manner, also indicating the efficiency of
the approach in terms of establishing rather small maximum
sets with much overlap of maximal elements among different
fairness relations.
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I. INTRODUCTION

An increasing number of resource sharing problems in
telecommunication appears to be of discrete nature, often
referring to the distribution of indivisible goods among
a number of users. We can easily demonstrate how a
number of recent “hot” problems promotes this aspect, like
cognitive radio, cooperative relaying, or queue utilisation
in a network of processors. Among these problems, one
can consider the Wireless Channel Allocation [1] as a
basic abstraction of combinatorial and optimality aspects
in these domains. It is a special case of fair distribution of
indivisible goods. The “goods” here are transmission chan-
nels, e.g. in a wireless communication among a number
of mobile agents (users), and a scheduler has to assign at
most one channel per user for each time slot. The physical
and infrastructure conditions of channel utilisation of a
specific mobile user at a specific timeslot are put into so-
called channel coefficients. Usually, they are reals from
[0, 1] and used as factors to model transmission properties
like channel fading, etc. Also, the pairs timeslot-channel
can be more simply stated as cells with a corresponding
matrix of channel coefficients per cell and user. Then for
each allocation of users to cells there is a performance per
user (the sum of channel coefficients of cells allocated to
this user) comprising a performance vector. This is the
performance of an allocation, obviously a multi-criterion
entity.

Distribution of indivisible goods has been studied in
economics for decades, and among the approaches that

are under discussion is social choice theory. Recently,
Suzumura brought the attention to the concept of ratio-
nalisation of social choice [2]. It is a purely set theoretic
approach, basing on the central concept of relations as a
subset of the direct product of sets to represent preference.
Concomitant with the specification of a particular relation,
we have its extreme set representing elements of the
relation domain to which no other element is in relation
or which are in relation to all other. In case that for a
social choice there is a relation such that social choice and
extreme set coincide, the social choice is considered to be
rationalisable. Assuming a preference for fair allocations
among a number of available states, the same approach
can be applied in resource allocation problems, as long as
we can specify corresponding fairness relations that allow
for a pairwise comparison of allocation states.

Recently, a number of such potential candidates for
fairness relations has been presented. In addition to the
classical relations, such as maxmin fairness [3], leximin
fairness and proportional fairness [4], we can find newer
approaches including alpha-fairness [5], parabolic fairness
[6], majority fairness [7], ordered proportional fairness [8],
maxmin multi-fairness [9]. We have to note that several
of these proposals were not made under a strict relation-
theoretic framework, but under the notion of stability,
where a state is considered stable if it establishes a logical
property against all other possible states. However, this
corresponds exactly with the specification of this state
as belonging to the best set of a relation that compares
two states by that logical property. This is an extension of
the common concept of maximising some functional that
represents the goodness or quality of states.

The approach has a number of advantages, mostly
resulting from unrevealing generic aspects of the relational
design. But there are also some disadvantages. One is that
the search domain for feasible allocations is squaring. It
means that in order to find best or maximal elements of
a relation (then to be used as chosen fair allocations) we
need to do a pairwise comparison of states. This is not
making the problem intractable, as there is no exponential
growth in complexity, but it can hurt nevertheless. For
example, to perform an exhaustive search for maximal
elements in a set of 1000 states requires 106 pairwise
comparisons. Having one Mio. states, these are already
1012 comparisons, rendering such approaches infeasible
as well (we may call this “jigsaw puzzle complexity”).
On the other hand, we are not aware of exact algorithms



with linear complexity in discrete domains that can be
used to directly find (or better: algorithmically construct)
maximal or best states.

Therefore, it is a good opportunity to study heuristic and
meta-heuristic approaches in order to approximate extreme
states of relations. A number of potential algorithms
have been presented in the domain of evolutionary multi-
objective optimisation employing the Pareto dominance
relation (also known as vector inequality) or variants.
Such algorithms can be easily adjusted to handle fairness
relations as well.

But having a number of potential algorithms, judging
their performance can become a conundrum: for knowing
the quality of their approximation to extreme states, we
need the exact solutions. But for finding these exact
solutions, we would need good algorithms. A possible
approach has already been presented in [10] where the per-
formance of relational optimisation by a fixed algorithm
was justified by means of comparing with “same effort”
random search. However, the method appears to be unable
to differentiate among algorithms for larger problem scales
(in this case beyond the level of 20 users) since the random
search becomes unable to provide a sufficient number of
good quality solutions.

Here, we want to assist the development and design
of such algorithms by providing a benchmark of specific
problems beyond “toy world” scale along with the exact
maximum sets for various fairness relations. For find-
ing the maximum sets, concurrent computing has been
employed. The paper will recall the definition of the
used fairness relations (Section II), descrive the scope of
the benchmark (Setion III), present the structure of the
benchmark and report about its design and implementa-
tion (Section IV), and provide some statistics and base
performance values (Section V) before concluding.

II. FAIRNESS RELATIONS

We recall a number of definitions for fairness relations
that appear in the benchmark. We refer to the literature to
find more information about their motivation and usage. In
all cases, we consider vector relations, esp. from vectors
with positive components. Then, a binary vector relation
R has the domain A ⊆ R+

n and is given as subset of
A × A (note that several definitions can be extended to
Rn). First we recall the basic vector inequality of Pareto
dominance. All definitions assume states x and y to be
from the domain A and have components xi, yi resp. with
i = 1, . . . , n. We also use the notation x(i) to indicate
the i-th smallest component of a general vector x. In all
these definitions, we use the “≥” symbol to represent the
aspect of reflexivity. In general, each of these relations
comes in pairs, with a corresponding “>” relation as its
antisymmetric part (i.e. among the set of all pairs x, y ∈ A
all pairs such that (x, y) ∈ R but not (y, x) ∈ R).

Definition 1. Pareto dominance: x ≥p y if for all i xi ≥
yi.

Now we consider maxmin fairness.

Definition 2. Maxmin fairness: x ≥mmf y if for all i
with xi < yi there exists a j such that (1) xj ≤ xi and
(2) xj > yj .

There are a number of ways to simplify the definition.
Especially from the implementation point of view above
the definition is rather inconvenient.

A possible way is to consider the set of all least
components of x where x and y differ, and to check
whether at least one of the corresponding y components
is smaller. This also helps to explain the name “maxmin.”
The maxmin fairness was explicitly introduced in [3].

Related to maxmin fairness (in some ways of considera-
tion even appearing to be the same concept) is the leximin
relation, lexicographic minimum, lexicographic maxmin
fairness etc. It is a sorted version of maxmin fairness.

Definition 3. Leximin relation: x ≥lm y if either for all
i x(i) = y(i) or there is an index i such that x(k) = y(k)
for 0 < k < i and x(i) > y(i).

Parabolic fairness refers to a concept of expanding
maxmin fairness to different domains. We need to specify
an ordered weighted aggregation operator. Given a set of
weights wi then the ordered weighted averaging (OWA) is
defined as OWAw(x) =

∑
i wix(i). In parabolic fairness,

we focus on comparison by OWA with decreasing weight
vectors.

Definition 4. Parabolic fairness: given a set of strictly
decreasing weights wi then x ≥pb y iff OOWAw(x) ≥
OOWAw(y).

To indicate the decrease of weights (i.e. the smaller
component is multiplied with the larger weight) we can
also write ordered-ordered weighted averaging (OOWA)
but the choice for this name is rather random. There are
three specific ways for providing the weights: from lowest
to largest increasing exponentially, by Fibonacci series,
and linear. The corresponding definitions:

1) expOOWA realises parabolic fairness by choosing
the weights such that for n ≥ i > 1 wi >∑

0<j<i wj . A suitable choice is wi = 2n−i.
2) linOOWA realises parabolic fairness by any de-

creasing set of weights, with wi = n− i+ 1 being
a suitable choice.

3) FibOOWA relaxes the rapid decay of weights in
expOOWA by the condition w2 > w1 and wi >
wi−1 + wi−2 for i > 2. A suitable choice is wi =
Fn−i+3 − 1 where Fi is the i-th Fibonacci number.

We will write x ≥eo y, x ≥lo y and x ≥fo y correspond-
ingly.

We continue with the “family” of proportional fairness
relations, initiated by Kelly’s seminal paper [4].

Definition 5. Proportional fairness: x ≥pf y if and only
if

n∑
i=1

yi − xi
xi

≤ 0 (1)



Definition 6. Alpha fairness: given an integer α ≥ 1
x ≥af y if and only if

n∑
i=1

yi − xi
xαi

≤ 0 (2)

Note that for α = 1 this is the same as proportional
fairness, and in some restricted sense for α → ∞ al-
pha fairness approximates maxmin fairness [5]. But with
regard to an adjustment between proportional fairness
and maxmin fairness, ordered proportional fairness was
introduced in [9].

Definition 7. Ordered Proportional Fairness: x ≥opf y if
and only if

n∑
i=1

y(i) − x(i)
x(i)

≤ 0 (3)

At last, another way of “balancing” proportional and
maxmin fairness is introduced here:

Definition 8. Self-weighted proportional fairness:
x ≥swpf y if and only if

n∑
i=1

∑
j 6=i

xi

× yi − xi
xi

≤ 0 (4)

where each term in the indicator expression for pro-
portional fairness is weighted by the average of all other
components.

Each relation can be decomposed into an asymmetric
and a symmetric part.

Definition 9. Given a relation R over a domain A. The
asymmetric part P (R) (or PA(R)) is the set of all ordered
pairs (x, y) with x, y ∈ A where (x, y) ∈ R but not
(y, x) ∈ R. The symmetric part I(R) (or IA(R)) is the set
of all ordered pairs (x, y) with x, y ∈ A where (x, y) ∈ R
and (y, x) ∈ R.

Obviously R = P (R) ∪ I(R) and P (R) ∩ I(R) = ∅.
Generally, for any comparing relation, if the relation is
to be understood in the sense of “at least as” then the
asymmetric part is a corresponding “more than” relation
(for example, for the ≥-relation among real numbers, the
asymmetric part is the corresponding >-relation). This
concept is needed to properly define the concept of a
maximum set.

Definition 10. For a relation R over domain A an element
x ∈ A is maximal if and only if there is no y ∈ A with
(y, x) ∈ P (R). The set of all maximal elements is called
the maximum set MR (or MR(A) if A is not understood
from context).

Then, generally (relational) optimization can be in-
terpreted as the task of finding the maximum set of a
given relation R. If R is given by a real-valued n-variate
function f : Rn → R it coincides with “standard”
function optimization (actually maximization). But the
relevant aspect about its definition is that it applies to
each relation, including all listed fairness relations, and

thus each definition of a relation specifies a corresponding
optimization task.

III. SCOPE OF THE BENCHMARK

The goal is to provide a number of test instances for
evaluating and comparing the performanc of model-free
optimization approaches. The goal of optimization here is
approximating the maximum sets for some fairness rela-
tion within a given feasible space. We selected the WCA
problem (see next section for the exact specification) as it
represents the generic aspect of many resource distribution
problems appearing in networked communication these
days. Since the approach does abstract from other model-
ing aspects, design and utilization of meta-heuristic algo-
rithms seems to be a promising approach in this direction.
However, these algorithms are facing a scaling problem, as
the size of feasible spaces grows exponentially, and exact
algorithms are not known so far. For keeping problem
scales in the scope of present day computing capabilities,
we have to focus on a time instant situation (a “snapshot”)
and ignore time varying aspects. Note that there is ongoing
research into a better understanding of time varying issues
with regard to fairness-based control, e.g. as represented
by the concept of balanced fairness [11].

Said this, there are limitations on the benchmark, basi-
cally also to avoid combinatorial explosion of the number
of possible choices. Future versions of the benchmark
may address some of these issues, if there is a particular
insterest. It means that in general the benchmark cannot
cover aspects that would need additional models for the
corresponding processes, including: changing number of
users by some probability distribution, point processes
for the creation of traffic or bandwidth demands, prizing
or prioritization models to solicit user demands. With
regard to the last item, we also want to refer to Kelly’s
aproach to proportional fairness [4], where a case was
considered where users pay for resource access. Then, a
separation is possible: if the system maintains proportional
fairness, then for each utility function there is a price
model maximizing total utility for all users on a lowest
cost level. We may consider this separation of combined
aspects and modalities of such a problem as a general
aspect.

IV. SPECIFICATION AND IMPLEMENTATION

Definition 11 (Wireless Channel Allocation (WCA) Prob-
lem). Given a set of n users U and m cells C and an n×m
matrix CC of channel coefficients, i.e. reals from [0, 1].
A channel allocation is a mapping A : C → U where to
each cell ci with i = 1, . . . ,m exactly one user uj with
j = 1, . . . , n is allocated. The notation is uj = A(ci).
An allocation is feasible if at least one cell is allocated
to each user. The performance of user uj in allocation A
is pj =

∑
i,A(ci)=uj

CCji. The task of wireless channel
allocation (WCA) is to find a feasible allocation a that
“maximizes” the performances for all users.

If “maximizing” is seen as maximising the total sum
of performances for all users, then the solution would be



simply to select for each cell one of the users with largest
channel coefficient. However, this might not be a feasible
allocation, i.e. there can be users to which no cell will
be allocated this way. What we are considering here is
to maximise performances by selecting solutions from the
maximum set of a relation.

Structure of the benchmark and implementation

A n ×m matrix CC of channel coefficients defines a
particular setting (number of channels, number of users
and channels coefficients), setting called run in the fol-
lowing. For each run, a maximum set is obtained for each
considered fairness relation, which defines a benchmark
for that run.

The whole benchmark is provided as a set of plain
text files, each file for a choice of number of users
and number of cells. Each file contains the results for
a fixed number of runs, 30 runs for smaller problems,
10 for larger problems. Each run is specified by a set
of channel coefficients, followed by the maximum sets
for the 10 relations that were listed in the foregoing
section: alpha fairness for α = 2 and α = 3 (note
that larger values for α make problems with numerical
precision), maxmin fairness, proportional fairness, ordered
proportional fairness, parabolic fairness using expOOWA,
FibOOWA and linOOWA, and finally the leximin relation.
For each relation, all pairs of performance vectors and
allocations of maximal elements are listed.

Only feasible allocations, where each users receives
at least one cell, were considered. Thus, the number of
feasible allocations for n user and m cells is n!S2(m,n)
where S2(m,n) is the Stirling number of second kind –
this counts the number of surjective mappings from the
set of cells to the set of users. Nevertheless, the evaluation
had to scan all nm possible allocations, since no simple
constructive procedure for surjective allocations is known.

It is also planned to provide a complete list of heuristic
results for these problems. So far, results for random
sampling are provided, to serve as a base performance
measure for future comparisons. The benchmark is pub-
licly available via a thematic webpage1.

The benchmark was generated using a program written
in the Go programing language (using the recently released
version Go 1.0). The Go programming language was
selected because of (1) its flexibility to create concurrent
programs – which also allows easy parallelization –, (2)
because it is a compiled language – which allows a fast
execution, being in our experience about 2 times the
running time of the same program written in C–, and
(3) because of its semantics, libraries and tools allow
fast prototyping, development and debugging. The total
running time of the whole benchmark was close to 30
hours. For each run of the experiments, the running time
for all of the 10 presented fairness relations takes a few
seconds for small problems (e.g. 3 users and 5 channels)
and several minutes for larger problems (e.g 5 users and

1Link is http://www.ndrc.kyutech.ac.jp/wcabenchmark/. Mirror on
http://rodrigo.verschae.org/wca/

7 channels). These times were obtained on a Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz computer with 8
cores and 16GB RAM.

In the Appendix, an example of a dataset is provided. It
shows the first run for the problem of 5 users and 6 cells.

V. CHARACTERIZATION OF THE BENCHMARK

We present a number of features and statistic evaluations
of the data set, also for the purpose to gain insight into
the behaviour of fairness relations for increasing problem
scales. For space reasons, we will only consider a selected
number of aspects for the larger scale problems.

Table I shows basic performance statistics of the max-
imum sets for all 10 fairness relations considered here.
In the first column, the performance range is per single
user performance, and it can be hold against the case
of a expected performance of a random assignment. For
example, in the case of 6 cells and 6 users, one user might
in average receive one channel, thus the expected perfor-
mance equals the expected channel coefficient: 0.5 in our
unbiased model. But we can see that the performances in
fair allocations are generally much larger, like 0.8 median
in worst case. We can also see that this worst case relates
to the lower difference between number of channels and
number of users. The lower the difference, the lower the
gain that users can expect in average.

Next column of Table I compares the total performance
of a maximum fair allocation with the maximum possible
total performance (which appears when we assign to each
cell the user with largest corresponding channel coeffi-
cient). We can see that choosing a fair allocation instead
of a maximising one usually will not incur a substantial
loss in total performance. In all cases, the loss is about
10% and seems to be rather constant.

The last column also indicates a convenient aspect of
fair allocations: there are always allocations selected by
multiple fairness relations (by being maximal with regard
to more than one relation). The sets shown in each cell
indicate the number of fair allocation that are maximal for
one relation (first element), two relations (second element)
etc. up to the last component indicating allocations appear-
ing for all 10 relations. The numbers were counted over all
runs and relations. A related evaluation (not shown here,
as it can be derived from the set values) is that the average
number of repeated occurrences of maximal allocations is
about 3. The good point is that the application of several
fairness relations provides overlapping maximum sets, and
thus allows to select allocations that appear for a larger
number of fairness relations. Also here, the effect seems
stronger when number of users and cells become similar.

Table II gives some information about sizes of maxi-
mum sets. The relations not listed here have all exactly
one maximum element per definition. As a general ob-
servation, the maximum sets remain tractable, i.e. there is
no notable “explosion” of their size, if compared to e.g.
Pareto dominance with a confirmed exponential increase.
Thus, they allow for efficient selection. Among the six
relations, maxmin fairness and ordered proportional fair-



users, cells allocations performance range maximum performance ratio repeating of maximal elements

4, 6 1560 0.375 - 0.85 - 0.972 - 1.315 - 2.453 0.652 - 0.877 - 0.923 - 0.965 - 1.0 (94 43 45 83 19 22 8 7 5 6)
4, 7 8400 0.454 - 0.968 - 1.29 - 1.598 - 2.786 0.678 - 0.889 - 0.944 - 0.977 - 1.0 (46 21 14 22 8 4 2 3 1 2)
5, 6 1800 0.185 - 0.77 - 0.89 - 0.977 - 1.945 0.726 - 0.88 - 0.916 - 0.95 - 1.0 (106 36 37 87 32 10 6 4 7 8)
5, 7 16800 0.292 - 0.824 - 0.932 - 1.267 - 1.904 0.697 - 0.873 - 0.923 - 0.95 - 1.0 (40 48 27 50 17 6 1 0 4 1)
6, 6 720 0.078 - 0.616 - 0.8 - 0.919 - 0.999 0.626 - 0.861 - 0.91 - 0.942 - 1.0 (73 35 17 24 14 6 4 5 2 16)
6, 7 15120 0.302 - 0.759 - 0.91 - 0.979 - 1.961 0.757 - 0.884 - 0.92 - 0.951 - 0.998 (24 29 16 32 10 4 6 1 0 1)
7, 7 5040 0.026 - 0.717 - 0.81 - 0.912 - 0.998 0.63 - 0.878 - 0.916 - 0.942 - 0.964 (48 8 4 0 6 2 0 2 2 6)

Table I
SOME STATISTICS FOR THE LARGER SCALE PROBLEMS. PERFORMANCE RANGE FOR SINGLE USERS AND RATIO TO MAXIMUM POSSIBLE TOTAL
PERFORMANCE ARE GIVEN AS RANGES: MINIMUM - 25%-QUANTILE - MEDIAN - 75%-QUANTILE - MAXIMUM. THE COUNT OF REPETITIONS OF

MAXIMAL ELEMENTS IS GIVEN AS ARRAY, FIRST ELEMENT THE NUMBER OF MAXIMAL ALLOCATIONS (AMONG ALL RUNS AND ALL 10
RELATIONS) APPEARING ONE TIME, SECOND ELEMENT APPEARING MAXIMAL FOR TWO RELATIONS ETC. FOR THE SAME WCA PROBLEM.

users, cells >af2 >af3 >mmf >pf >opf >swpf

4, 6 7.2 ± 2.0 7.3 ± 2.0 4.0 ± 1.2 6.0 ± 1.6 1.5 ± 0.8 6.2 ± 1.5
4, 7 6.9 ± 1.4 7.8 ± 1.5 3.4 ± 1.1 5.1 ± 1.6 1.4 ± 0.9 6.3 ± 1.6
5, 6 6.5 ± 2.4 7.0 ± 2.8 4.5 ± 2.3 5.9 ± 2.1 1.6 ± 0.76 6.2 ± 2.1
5, 7 14.0 ± 2.8 15.2 ± 3.6 3.6 ± 2.2 9.7 ± 4.3 1.7 ± 1.1 10.9 ± 4.4
6, 6 3.5 ± 3.6 4.5 ± 5.3 4.0 ± 3.5 2.0 ± 1.9 1.1 ± 0.3 2.3 ± 2.2
6, 7 7.7 ± 3.6 8.1 ± 3.1 3.5 ± 2.1 7.1 ± 2.7 1.4 ± 0.5 7.4 ± 3.4
7, 7 2.2 ± 1.9 3.0 ± 2.9 7.0 ± 7.0 1.8 ± 1.4 1.2 ± 0.4 2.0 ± 1.6

Table II
AVERAGE SIZES AND STANDARD DEVIATION OF MAXIMUM SETS FOR THE LARGER SCALE PROBLEMS.

ness appear to have rather constant sizes (except the case
of 7 users and 7 cells for maxmin fairness) while for other
relations, the maximum sets tend to become larger when
the number of users and cells differ more strongly. But
this can be also related to the increase of the number of
feasible solutions, see second column in Table I.

Table III shows the quality of random search with
1000 samples for selected fairness relations and larger
problem scales. The range values indicate the distribution
of smallest and largest shortest pairwise Euclidean dis-
tances between all elements of the maximum sets of 1000
samples and elements of the known correct maximum sets.
The purpose here is to give a base measure for future
evaluation of other algorithms (more “intelligent” than
random search), but they also demonstrate the general
hardness of finding good approximations to maximum
sets. We have to note that such investigations might
include the need to also find good performance measures
for search algorithms, as we have only limited evidence
that the Euclidean distance is a good choice to prescribe
similarity of approximated and real maximum sets.

The values listed in the table give some indication that
smaller maximum sets can be found more easily, despite of
being more sparse elements in feasible space, while other
searches are subject to a scaling effect and the performance
decays about linearly with problem scale.

VI. CONCLUSIONS

Benchmarking in general may always serve two pur-
poses. The obvious purpose is to provide a means for
justification of solution quality. But the other purpose is

also the stimulation and increase of awareness for the
underlying technical challenge. Both purposes are served
by the presented WCA benchmark. In addition to allow
for a quantification of future algorithm performances, it
also should help to become more aware of the relational
approach to fairness as a “social choice” from a number of
available states by using fairness relations to represent the
underlying preferences. Then, the datasets in the bench-
mark also demonstrate the efficiency of the approach, fol-
lowing from the appearance of rather small maximum sets
along with much overlap between the maximum sets for
various relations. Even for problems with feasible spaces
of size around 10,000 (thus 108 comparisons are needed
to find all maximum elements) the sizes of maximum
sets usually stay below 10, and in average each maximal
element appears for about 3 of 10 relations. A good base
for specifying suitable algorithms to find the maximum
sets has been already established by numerous evolution-
ary multi-objective optimisation algorithms, employing
Pareto dominance relation for internal justifications. We
express a strong expectation that these algorithms can be
applied to the generalising relational optimisation problem
by suitable modifications as well and that the presented
benchmark can help for their development.
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users, cells range minimum distances range Hausdorff distances

Maxmin Fairness

4, 7 0.0 - 0.147384 - 0.226919 - 0.341545 - 0.731937 0.176003 - 0.479681 - 0.635258 - 0.718378 - 1.18324

5, 7 0.0 - 0.236108 - 0.355949 - 0.450506 - 0.788894 0.280708 - 0.542024 - 0.709582 - 0.833534 - 1.20676

6, 7 0.0744312 - 0.353999 - 0.460859 - 0.608199 - 0.984624 0.321145 - 0.798776 - 0.905503 - 1.07927 - 1.4934

Proportional Fairness

4, 7 0.0 - 0.0 - 0.277916 - 0.341606 - 0.804337 0.0 - 0.668604 - 0.846364 - 1.01774 - 1.25849

5, 7 0.0 - 0.0 - 0.233341 - 0.408969 - 0.670712 0.204863 - 0.977704 - 1.07597 - 1.26048 - 1.65592

6, 7 0.0 - 0.389891 - 0.447506 - 0.57173 - 0.769509 0.0 - 1.4578 - 1.60417 - 1.75633 - 2.59928

Ordered Proportional Fairness

4, 7 0.0 - 0.359477 - 0.672203 - 0.875952 - 1.38887 0.0 - 0.479213 - 0.862431 - 1.11058 - 1.72604

5, 7 0.0 - 0.37806 - 0.715634 - 1.02487 - 1.62217 0.0 - 0.654368 - 0.957394 - 1.15764 - 1.91955

6, 7 0.218002 - 0.646561 - 0.823563 - 0.983349 - 1.38393 0.218002 - 0.799959 - 0.984393 - 1.20118 - 1.8094

Parabolic Fairness (expOOWA)

4, 7 0.0602992 - 0.359477 - 0.668123 - 1.01656 - 1.38887

5, 7 0.0 - 0.408036 - 0.647562 - 0.80851 - 1.24902

6, 7 0.221084 - 0.498017 - 0.609827 - 0.752659 - 1.13065

Table III
PERFORMANCE OF RANDOM SEARCH WITH 1000 SAMPLES FOR SELECTED FAIRNESS RELATIONS AND LARGER PROBLEM SCALES. THE RANGE

VALUES INDICATE THE DISTRIBUTION OF SMALLEST AND LARGEST SHORTEST EUCLIDIAN DISTANCES BETWEEN MAXIMUM SETS OF 1000
SAMPLES AND KNOWN CORRECT MAXIMUM SETS. THE SHOWN VALUES HAVE THE SAME MEANING AS IN TABLE I. FOR EXPOOWA, MAXIMUM

AND MINIMUM DISTANCE COINCIDE SINCE THERE IS ALWAYS ONLY ONE MAXIMAL ELEMENT. ALL RESULTS ARE BASED ON 10 REPETITIONS
FOR EACH OF THE 10 RUNS IN THE BENCHMARK.
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APPENDIX

Example dataset
We present the entry for run 1 for 5 users and 6 cells.

The used channel coefficients were:
User Channel Coefficients

0 (0.736 0.330 0.480 0.028 0.229 0.496)
1 (0.306 0.412 0.385 0.396 0.571 0.950)
2 (0.702 0.076 0.818 0.857 0.993 0.587)
3 (0.180 0.688 0.814 0.780 0.893 0.720)
4 (0.117 0.398 0.135 0.597 0.120 0.924)

In this example, the allocation for maximum total per-
formance is (0 3 2 2 2 1) (for each cell the user with max-
imal channel coefficient is selected) with performances
(0.736 0.924 0.688 2.668 0.0). In this case, user 4 would
not receive any allocation.

The maximum set for alpha fairness with α = 2:



Performance Allocation
(0.736 0.950 1.811 0.688 0.597) (0 3 2 4 2 1)
(1.066 0.950 0.993 0.814 0.597) (0 0 3 4 2 1)
(0.736 1.362 0.993 0.814 0.597) (0 1 3 4 2 1)
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)
(0.736 0.571 1.675 0.688 0.924) (0 3 2 2 1 4)
(0.736 0.571 0.857 1.502 0.924) (0 3 3 2 1 4)

The maximum set for alpha fairness with α = 3:

Performance Allocation
(0.736 0.950 1.811 0.688 0.597) (0 3 2 4 2 1)
(1.066 0.950 0.993 0.814 0.597) (0 0 3 4 2 1)
(0.736 1.362 0.993 0.814 0.597) (0 1 3 4 2 1)
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)
(1.066 0.571 0.857 0.814 0.924) (0 0 3 2 1 4)
(0.736 0.571 0.857 1.502 0.924) (0 3 3 2 1 4)

The maximum set for maxmin fairness:

Performance Allocation
(1.066 0.950 0.993 0.814 0.597) (0 0 3 4 2 1)
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)
(1.066 0.950 0.818 0.893 0.597) (0 0 2 4 3 1)
(0.736 0.950 0.818 0.893 0.995) (0 4 2 4 3 1)
(1.066 0.571 0.857 0.814 0.924) (0 0 3 2 1 4)
(0.736 0.983 0.857 0.814 0.924) (0 1 3 2 1 4)

The maximum set for proportional fairness:

Performance Allocation
(0.736 0.950 1.811 0.688 0.597) (0 3 2 4 2 1)
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)
(0.736 0.571 1.675 0.688 0.924) (0 3 2 2 1 4)
(0.736 0.571 0.857 1.502 0.924) (0 3 3 2 1 4)
(0.736 0.412 1.850 0.814 0.924) (0 1 3 2 2 4)
(0.736 0.412 1.675 0.893 0.924) (0 1 2 2 3 4)

The maximum set for ordered proportional fairness:

Performance Allocation
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)

The maximum set for self-weighted proportional fair-
ness:

Performance Allocation
(0.736 0.950 1.811 0.688 0.597) (0 3 2 4 2 1)
(1.066 0.950 0.993 0.814 0.597) (0 0 3 4 2 1)
(0.736 1.362 0.993 0.814 0.597) (0 1 3 4 2 1)
(0.736 0.950 0.993 1.502 0.597) (0 3 3 4 2 1)
(0.736 0.950 0.993 0.814 0.995) (0 4 3 4 2 1)
(0.736 0.571 1.675 0.688 0.924) (0 3 2 2 1 4)
(0.736 0.571 0.857 1.502 0.924) (0 3 3 2 1 4)
(0.736 0.412 1.675 0.893 0.924) (0 1 2 2 3 4)

The last four relations produce maximum sets with
exactly one element:
• expOOWA: performance (0.736 0.950 0.993 0.814

0.995) for allocation (0 4 3 4 2 1)
• FibOOWA: performance (0.736 0.950 0.993 0.814

0.995) for allocation (0 4 3 4 2 1)
• linOOWA: performance (0.736 0.950 0.993 0.814

0.995) for allocation (0 4 3 4 2 1)
• leximin: performance (0.736 0.950 0.818 0.893

0.995) for allocation (0 4 2 4 3 1)


