A Heuristic Approach to Fair Routing Path
Selection

Noriaki Hirosue, Kaori Yoshida, and Mario Képpen

Kyushu Institute of Technology, 680-4 Kawazu, lizuka,
n_hirosue@pluto.ai.kyutech.ac.jp, kaori@ai.kyutech.ac.jp,
mkoeppenQieee.org

Abstract. Knowledge about efficient usage of network resources is an
important prerequisite for user collaboration in a static networked envi-
ronment. Most of the network infrastructure internals cannot be directly
sensed by users, except traffic allowances and response times. Here we will
provide a technical approach for demonstrating to the user, how much
changing traffic flows can guide to better employment of the shared net-
work resources for all users together. The approach is based on order
theory and fairness relations. Using the maxmin fair dominance relation,
from its maximum set of maxmin fair states of random routings, the
element with the largest throughput will be chosen, to yield a fair rout-
ing. The reported experiments will demonstrate that, for example, for a
group of about 10 users, 500 samples are sufficient to report a suitable
fair traffic allocation to the users.

Keywords: maxmin fairness, network routing, heuristic method, fair
routing

1 Introduction

In the field of network design, consideration of fairness among collaborating
users is of high importance. For network fairness, there are two possible points of
view. The first is the network infrastructure point of view, such as traffic analysis,
smart routing and network resource allocation. For example, Nakamura et. al. [7]
proposed a global network measurement platform, which achieves a simultaneous
and efficient use of resources. The proposed global network measurement enables
integrated network monitoring functionality on-demand and adapts it to specific
application purposes. Mo and Walr [6] demonstrated the existence of fair end-
to-end window-based congestion control protocols for packet-switched networks
with first come-first served routers. They studied congestion control protocols
based on the concept of generalized proportional fairness. The infrastructure-
based network fairness research has a long history [4] and it is still a hot topic.
The second is the network user point of view. For example, an important factor
here might be the experienced response time of a network game, QoS in general,
or the sense of closeness in a social network. Verschae et al. [9] tried to improve
QoS in network systems based on partial user-supplied information. Considering

network fairness from user point of view means to evaluate user satisfaction.
Besides, once we can infer user satisfaction or intentions, the network system
can provide the best environment that individually suits to each user. At the
same time, users will be able to choose their traffic flows and routings in a similar
way like when people avoid traffic jams by using a car navigation system.

In this paper, we propose a criterion for fairness based on two-stage use of the
maxmin fair dominance relation. Thus, we can provide an evaluation method for
network fairness considering both, the infrastructure and the user point of view.
The approach is based on comparing a number of maxmin fair states of user
traffic for a number of randomly selected routings according to maxmin fairness,
then deriving its maximum set, and finally selecting the maxmin fair state with
maximum throughput from this maximum set.

In section 2, we will recall the necessary formal and technical background,
before proposing this Throughput Maximizing Fair State (TMFS) selection ap-
proach in section 3. The approach is validated by experiments given in section
4. The paper concludes with a short summary and an outlook.

2 Technical Background

In the following, we will focus on transportation networks (data networks, flow
networks, or communication networks). A network is represented as an undi-
rected graph G = (N, L) with node set N and link set L (allowing traffic flow
in both directions of a link, and the graph is assumed to be connected). There
is also a set P of m sender-receiver pairs p; = (s;,7;), and each sender s; wants
to send data flow (measured in amount per time unit, for example, the average
number of packets per time unit) to its corresponding receiver r;. Note that
sender and receiver may overlap, so traffic can be send from different senders
to the same receiver, or from the same sender to different receivers. For sending
traffic through the network, a loop-free sequence of links from each sender to
its receiver has to be specified. For connecting pair p; by a sequence of links L;,
the destination node of a link is the source node of the next link, the source
node of the first link is the sender s;, and the destination node of the last link
is the receiver r;. Such a sequence of links is called a path. The total set of all
paths for all p; € P is called a routing. For simplification, we will also refer to a
sender-receiver pair and their connecting path as a user of the network.

Furthermore we will assume that this user end-to-end traffic flow, also called
throughput, which can be send via a link is limited by a maximum capacity
ci; for the link connecting nodes ¢ and j. Thus, if for a specific routing several
sender-receiver pairs share the same link, then the maximum capacity is limiting
the sum of the traffics that can be send by all link-sharing senders together.

In order theory, for a given set A, a binary relation >, between elements
of A is a subset of A x A: a pair (z,y) belongs to this subset if and only if
x € A is in this relation to y € A (i.e. z >, y). Then, for each relation we can
define the mazimum set and the best set subsets of A (both are possibly empty).
The maximum set contains all elements x € A such that there is no different

y € A with y >, z. The best set contains all x € A such that for any other y
x >, y holds. For the standard size relation of real numbers, for example, both
definitions coincide, but for other relations, they will refer to different sets. In
many cases, the best set of a relation is usually empty, while the maximum set
usually contains more than one element.

A mapping from the set of all routings of all networks to subsets of all routings
of all networks is called a routing path selection. If these subsets correspond to
the maximum sets of a relation, following Suzumura and the case of social choice
theory [8], the routing path selection will be called rationalizable. Thus, the task
of routing path selection is two-fold: specify a rationale for the selection by means
of specifying a relation, and provide a method for finding (or approximating) the
maximum set of this relation among all routings as well.

2.1 Bottleneck flow control

To assign a traffic flow ¢; to each sender-receiver pair p; for a given routing, a
suitable control paradigm for the network is needed (in the following, the totality
of such traffic assignments for all users will be called a state). Usually this would
be an optimization task, for example maximization of the total throughput of
all sender-receiver pairs. But it is known for long that such a control paradigm
can lead to the exclusion of users. As a simple example, consider a routing where
one user u; shares one link with capacity ¢ with user us, and one link with same
capacity ¢ with user us. If user u; sends the flow ¢ by such a routing, users us
and ug can each send at most ¢ — ¢, and the total traffic is ¢t + 2(c — t) = 2¢ — t.
This value is maximal for ¢ = 0, i.e. allowing no traffic for user u; at all.

Bottleneck 3

Bottleneck 2 -
Bottleneck 1 —40 F —— . — . . .l ... —
E o
o/ / o/
(by b, | by by bs)

Fig. 1. Scheme of the Bottleneck Flow Control algorithm. Starting from 0, traffic flows
are increased until they meet the first bottleneck, as for b, and bs who are assumed to
share a link. The process continues until all traffics are assigned.

To overcome this problem, a different way of assigning traffic by the so-called
Bottleneck Flow Control (BFC) has been proposed [3]. This algorithm will be
summarized here: the traffic flows (i.e. the state) will be assigned in an iterative
manner (see Fig. 1) starting with 0 for all users. Then, the value will steadily
increase as long as no sum of traffics at any link exceeds a maximum capacity.
But for some traffic flows, this will happen, and we meet a so-called bottleneck
(as between users 1 and 5 in the figure). So far, we have assigned the same traffic
to all users, but a further increase of same flows is no longer possible. So, the
increase for the users sharing the bottleneck link will be stopped, but it will be
continued for all other users (2, 3 and 4 in the example). Then, further increasing
the flow will fill another bottleneck (as for users 2 and 4 in the example), and
also these users have received the same traffic flows so far. The procedure will
continue, until all bottlenecks are filled.

We note that the implementation of the algorithm does not need the “flood-
ing” aspects, as the bottlenecks can be directly computed from the maximum
capacities. Nevertheless, the algorithm ensures a non-zero traffic assignment to
each user, avoids congestion at any link, and is such that groups of users receive
the same traffic flow as long as possible. Thus, the state at the end is consid-
ered a fair assignment of traffic to users [2]. This will be detailed in the next
subsection.

2.2 Fairness relations

We can now consider the maximum fair dominance relation [5] as a rationale for
the BFC result: among all states for a given routing, the state z is maxmin fair
dominating the state y if and only if for each i with y; > x;, there is at least
one j # ¢ such that x; < x; and y; < x;. Then, the state assigned by the BFC
algorithm is the best element of the maxmin fair dominance relation, and it is
also the only element of its maximum set.

Thus, the maxmin fair dominance relation can be used to compare different
states for the same routing. However, the same relation can also be used to com-
pare the maxmin fair states for different routings, and thus to compare routings.
This is the main proposal of this paper. By this rationale, there will also be a
maximum set of routings. So, if there is a method for generating different rout-
ings, we can consider this maximum set and use it as a means to select a routing
in a fair manner.

In this paper, we consider a simple approach to routing variation by employ-
ing the Dijkstra algorithm with random weights. Algorithms like the Dijkstra
algorithm, or the Floyd algorithm, given a weighted graph, assign a path between
each pair of nodes with a minimum sum of weights. If using random weights, we
will create random paths. Since the paths are related to a minimization criterion,
there will be a preference for shorter paths with a small number of hops. For
space reason, we cannot provide a detailed analysis of this relation here.

Since maximum sets may have more than one element, the final selection of
a single element can be based on a straight optimization point of view. In this

paper, we use the selection of the element of the maximum set of all routings
with largest sum of components.

3 Fair Routing Path Selection

In the proposed fair routing approach, the final goal is the selection of paths
connecting sender-receiver pairs, i.e. the routing. Practically, routing is usually
achieved by a shortest path selection procedure. This ensures a minimum number
of hops. However, according to a fairness criterion, this might not always be the
best choice, since the number of hops is not directly related to link capacity and
traffic congestion.

Here, we are focusing on an approach to routing path selection that can
take fairness into account, automatically avoids traffic link congestion, and is,
as the following experiments show, easy to compute for a localized segment of a
network.

We recall the following inferences that can be achieved by the algorithms
that were presented in the foregoing section:

1. Given the routing (i.e. graph G of the network, sender-receiver pairs P, and
their connecting paths), and the maximum capacities ¢, we can find the
maxmin fair state by the BFC algorithm.

2. Given a graph G, sender-receiver pairs P, and weights assigned to each link,
we can find a routing by Dijkstra’s algorithm by minimizing the sum of
weights along the paths connecting senders and receivers.

3. Given a set of states, we can find its maximum set for the maxmin fair
dominance relation by direct evaluation.

4. Given a set of states, we can find the element with the largest total sum of
throughputs by direct evaluation.

Now we link these inferences together by adding a randomization step, as it
is shown in Fig. 2 to achieve the proposed procedure.

Initially, we have a graph G, a set P of sender-receiver pairs, and maximum
link capacities for all links in the network.

At first, we generate a set of k random weight assignments to the links of the
network. These weights do not have a specific meaning, but they give the base
for the Dijkstra algorithm to find (shortest) paths for all sender-receiver pairs,
and thus assign a routing, one for each of the k£ random weights assignments
(inference 2).

For each of the k routings, we can find the maxmin fair state by the BFC
algorithm, assigning traffic flows to each user, and thus achieving a state for each
routing (inference 1). From these states, we can find the maximum set of the
maxmin fair dominance relation (inference 3), and from the maximum set, we
select the state with the largest sum of components, which is the “throughput
maximizing fair state” (TMFS) (inference 4).

After this procedure, given a network, sender-receiver pairs, and maximum
capacities, we have generated two things: a routing, i.e. a way of connecting

(1) Dijkstra’s
Algorithm

(2) BFC

(3) Maximum Set (4) Maximum Throughput

input output

Maximum Set Throughput

Links Maximizing

Capacities Fair state
Graph { Nodes

Sender

Receiver Routings Maxmin Fairness states

weights from 0.0 to 1.0

Fig. 2. Inference scheme of the throughput maximizing fair state routing.

senders and receivers in the network (the routing that resulted into the finally
selected TMFS) and a state that assigns traffic to each user (the TMFS).

The method would be complete, if we could investigate all possible routings.
However, the number of possible routings in a network will grow rapidly with
network dimensions, and an exhaustive search is impossible with any reason-
able computational effort. Therefore, the possible routings are sampled here by
assigning random weights. As the used Dijkstra algorithm then is focusing on
paths with the smallest sum of weights, the approach nevertheless favors shorter
connections, and also avoids any loops in the paths.

4 Experiments

In this section, we will focus on the real-time applicability of the proposed ap-
proach. By the rapidly growing number of possible routings in a network, a
comparison to the real TMFS is impossible even for low network dimensions.
From the specificity of the approach, a direct comparison with other methods is
hardly possible as well, as maxmin fairness is not a relation that is maximizing
a numerical value.

We might rather ask about a reasonable number of samples (indicated by &
in the foregoing section), and how much increasing this number will affect the
final outcome of the sampling, i.e. the performance (sum of components) of the
TMFS. This was guidance for the design of the following experiments.

4.1 Size of maximum set

In this experiment, the size of the maximum set of the k¥ maxmin fair states was
monitored when increasing the number &k of states by a computer simulation.
Some example results are shown in Fig. 3. The used networks had 10 nodes,

were randomly connected by the Barabasi-Albert model [1], and each link had
a maximum capacity of 100'. At most 30 sender-receiver pairs were randomly
selected.

30 T

25 |

Patternl

I_’_"-']_

Pattern2

Pattern3

Pattern4

Pattern5

Pattern6

| Maximum Set|

Pattern7

v
Pattern8
n _'—’_ Pattern9

'—' _'_r U =~ Pattern10

600 800 1000 1200 1400 1600 1800 2000
state (S)

Fig. 3. Size of maximum set vs. number of states for several network configurations.

We can observe a common pattern for the evolution of the size of the maxi-
mum set with increasing number of samples: it will nearly linearly increase with
the number of samples, but then, often, suddenly drop to a much smaller value.
After this, the increase may go on, but with a notably smaller slope. Then, for
given network dimension, we often have the strong drop before evaluating 1000
samples. Nevertheless, exceptions like patterns 4 and 10 of the figure are possible.

4.2 Maximum throughput

In addition to the observations from the first experiment, we still cannot know
how “far away” from the real maximum set we are, even after evaluating thou-
sands of samples. However, as we are selecting the TMFS at the end, the more
relevant question might be how strongly the sum of components of the selected
states will vary at all. This was the topic of the second experiment.

In the same configuration as the former experiment, we also computed the
maximum throughput (i.e. sum of components) of the maximum states. Figure
4 plots these values for the same cases as before, and it can be clearly seen that

! The reason for choosing a constant here is to avoid biases caused by single links with
lower capacities that are not related to link sharing. The choice for the value 100 is
just for numerical convenience. All used operations here are scale-invariant.

1100

rl'
1000 —
500 :!él.. — 4
’ ﬁ 1 'ﬁ ——Patternl

800 I I| 1 —— Pattern2
E] 1
Q 700 ——— Pattern3
K=y
g‘ 600 ——Patterns
= —— Pattern5
< 500
€ —— Patterng
3
£ 400 ——— Pattern?
é 300 Pattarng

200 —Patternd

100 ——— Pattern10

0 t t t t t t t t t |

0 200 400 GO0 800 1000 1200 1400 1600 1800 2000
number of states

Fig. 4. Maximum throughput vs. number of states for several network configurations.

while the size of the maximum sets can vary greatly, their maximum throughput
does not. In each case, we even achieve comparable traffic flows.

This has a strong implication for the practical application of the procedure:
first, by using the Dijkstra algorithm, we focus on shorter and cycle-free paths;
second, by using the BFC algorithm and the maximum set of its different results,
we are focusing on a routing selection with fair traffic assignment; but third, we
will achieve a comparable performance even after evaluating a smaller number
of samples only.

As a result in the specific case of the experiment (10 nodes, 30 pairs) it can
be seen that k& = 500 samples are sufficient for a fair routing selection with
throughput maximization at the end.

4.3 Computational effort

In this section, we want to compare the computational effort needed for the
various processing steps of the proposed approach. This is a necessary study
in order to evaluate the applicability of the proposed approach under real-time
conditions. The following set up was used: number of nodes |N| = 10, and
the networks were also randomly linked by the Barabasi-Albert model. The
maximum capacity of all links were set to 100, and the number of sender-receiver
pairs grew from 5 to 50 in steps of 5.

The computation times were measured on a PC with AMD Athlon®64 Pro-
cessor 3200+ (2.00GHz), running Microsoft Windows XP Professional Version
2002 SP3. The PC had 1.00GB of memory, and the programming environment
was Java 1.6.0_23. The results can be seen in Fig. 5. There, the time in pus needed
to find pinee versus number of pairs used in the sampling is shown.

It can be seen that there is a linear increase in total processing time, as
well as for the main components “BFC” (largest share of processing time) and
“Dijkstra’s Algorithm” (the second largest share). Note that the processing time

6000

5500
5000 »
4500 /
4000
3500 /
/ —&—Total
3000 / ~f—(1) Dijkstra's Algorithm
2500 (2) BFC
2000 / =>é=(3) Maximum Set
1500 / ==f=(4) Maximum Throughput

1000 /

0 e f i f f X pm—
0 5 10 15 20 25 30 35 40 45 50 55

processing time [0.001ms]

number of pairs

Fig. 5. Shares of processing time vs. number of pairs.

for Dijkstra’s Algorithm increases differently for the number of nodes, but here,
we are focusing on the number of pairs that send traffic through a network for
a fixed architecture.

The other shares are barely visible in the graph, in fact, the share for finding
the maximum set, and for selecting the largest throughput from the elements in
the maximum set can be neglected in comparison to the processing time needed
for the other steps.

5 Summary

The uncontrolled sharing of network resources can easily lead to unwanted situ-
ations for collaborating users, especially traffic congestion and response delays.
Often, the reasons for this are not transparent to the user (for example, the user
has no direct sensation of a “bottleneck” in a network, or the way her or his data
packets are routed). In fact, there are no objective bottlenecks in a network, as
present analysis has shown that a bottleneck is a virtual concept of congestion
models. The approach presented in this paper is suitable to report direct infor-
mation to the user that can be used to improve the efficiency of shared network
employment for all users together. The approach is based on fairness, more spe-
cific on the selection of the element with the largest total throughput from the
maximum set of the maxmin fair dominance relation for a probing sample of
random routings.

Once we have obtained this state, the further processing is open to some
choices. These days, routers (i.e. the nodes in the network graph) are not “in-
telligent” and do only what their name indicates: route the traffic, and drop

overexcess traffic packages. The fair traffic rates can be implemented by router
communication, but they can be negotiated between users as well. The main
desiderata here is that the user will realize that any attempt to increase traf-
fic in current network situation will cause other users (of her or his group) to
experience worse performance - this is ensured by the maxmin fairness definition.

The reported experiments demonstrate that, for example, for a group of
about 10 users, 500 samples are sufficient to report a suitable fair traffic alloca-
tion to users. Future work will focus on a more efficient sampling method, based
on meta-heuristics, and the extension of the concept by including the trade-off
with delay time in the relational approach. Also, we will have to provide more
efficient methods to generate representative routing samples with regard to a
following fairness evaluation.

Acknowledgment

This work was partly supported by the Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (S) (No. 18100001).

References

1. Albert, R., Barabési, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47-97 (Jan 2002)

2. Bertsekas, D., Gallager, R.: Data Networks. Englewood Cliffs, N: Prentice Hall
(1992)

3. Jaffe, J.: Bottleneck flow control. IEEE Trans. Commun. COM-29 (July 1981)

4. Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecomm. 8§,
33-37 (Jan/Feb 1997)

5. Koppen, M., Tsuru, M., Oie, Y.: Evolutionary approach to maxmin-fair network-
resource allocation. In: Applications and the Internet, IEEE/IPSJ International
Symposium on. pp. 253-256. IEEE Computer Society, Turku, Finland (2008)

6. Mo, J., Walr, J.: Fair end-to-end window-based congestion control. IEEE/ACM
Trans. on Networking pp. 556-567 (2000)

7. Nakamura, K., Tsuru, M., Oie, Y.: On the framework for network measurement
as a service — the perfsonar-based integrated network management. In: Intelligent
Networking and Collaborative Systems, International Conference on. pp. 325-326.
IEEE Computer Society (2010)

8. Suzumura, K.: Rational Choice, Collective Decisions, and Social Welfare. Cambridge
University Press (2009)

9. Verschae, R., Képpen, M., Yoshida, K.: Partial user-supplied information and user
modeling for improving QoS. Simulation Modelling Practice and Theory 19(1), 47—
55 (January 2011)

