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Abstract

 

—This paper presents an approach to the generalization of grayscale morphology to color images.
Attaining such a generalization is strongly related to the issues of multivariate ordering and to the Pareto sets
of multiobjective optimization. Some ranking schemes for multivariate data are recalled. For color morphology,
the most important underlying ranking scheme is reduced ordering (also referred to as total ordering). Also,
there is the partial ordering, which gives the important class of Pareto-Morphologies. Since partial ordering by
Pareto sets commutes with reduced ordering, a so-called Pareto-Morphology is defined as a generalized multi-
variate morphology, for which the results will not change, if its computations are restricted to the Pareto set of
the (local) neighborhood of a pixel. By further applying the concept of fuzzy subsethood to color values, a
Pareto-Morphology can be designed, which is not based on reduced ordering, hence, it provides a manner for
native color treatment. The properties of this newly-proposed Fuzzy-Pareto-Morphology and examples of its
application for the processing of color textile images are given.
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1. INTRODUCTION

Mathematical morphology can be considered as a
theoretical and practical means for analyzing spatial
structures. It comprised a versatile toolset of techniques
for image processing, whose usefulness has been
proven for the processing of binary images and gray-
scale images as well. Operations of mathematical mor-
phology are image-to-image transformations based on
a structuring element, which acts like a probe sensitive
for structural information. As a result of the operation,
some image features might be enhanced, suppressed, or
preserved [12].

Basically, there are two morphological operations,
dilation and erosion, which are used for the definition
of more complex morphological operations. Nowa-
days, definitions of dilation and erosion are fixed for the
treatment of binary images and grayscale images.
Other concepts include the generalization of these basic
definitions or fuzzy logic (consider, e.g., [2, 7, 11]).

However, requirements for a generalized dilation as
an image-to-image operation, which employs a struc-
turing elements, are still under discussion. As sug-
gested in [10], there should be three key ideas, based on
which the dilation is defined:
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 an idea of ranking due to
a sort order; in idea of a supremum due to this ranking;
and the possibility of admitting an infinity of operands.

Color image processing is of essential importance in
order to increase robustness, versatility, and reliability
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The original color figures provided by the authors are presented
here in black and white. We apologize for this inconvinience.
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Generally, when the definition of a dilation is fixed, the erosion is
defined as the complementary operation.

 

of technical vision systems. As exemplified by human
perception abilities, color is more than a simple “add-
on” to grayscale images.

Two questions are considered to be of basic impor-
tance for color image processing, the question of color
representation, which is strongly relate to color spaces,
and the question of appropriate color image processing
operations. While investigations on the first question
resulted in a wide variability of technical, psychologi-
cal, or theoretical important color models (e.g., HSI,
RGB, CVYK, Lab, to name but a few…), research on
the second question has been performed in a more
restricted manner. Some basic problems related to color
image processing are: multivariate nature of color data,
which complicates the extension of some grayscale
operations to color images (e.g., convolution, mathe-
matical morphology); and the dual nature of human (or
mammalian) color perception sensitiveness: being
highly sensitive to smallest “color artifacts”, and being
highly insensitive for luminescence variations within
images (e.g., under varying lightning conditions) at the
same time.

This complicates and restricts possible definitions
for versatile operations on color images. Neither Lapla-
cian, Sobel nor thresholding found commonly
accepted, suitable counterparts in color spaces so far.
This holds for mathematical morphology as well.

This paper deals with the definition of dilation (and
erosion) within the context of color image processing.
The fundamental lack of a “natural sort order” of mul-
tivariate data and the numerical differences due to the
choice of different color spaces make it hard or even
impossible to define something like a “color morphol-
ogy”. But it could be expected to transfer a large num-
ber of grayscale morphological techniques to color
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images. It could be expected to design highly color-
specific operations from morphology as well.

Very few of past works dealt with such extensions.
In [5], the issue is intensively discussed and a definition
of morphology is presented, which will be generalized
in this paper to a larger class of color morphologies,
each of which is based on its unique definition of the
dilation operation. In [13] and [4], the approach pre-
sented in [5] is generalized and based on a different for-
mal viewpoint. In [3], a color morphology for the pro-
cessing of label images (i.e., images, wherein each
pixel position is labeled by a color, indicating, e.g.,
class membership) is presented. This approach is very
useful for the morphological treatment of pseudo-col-
orized segmentation results, but it lacks some consis-
tency within its basic definitions and it assumes that
only a few colors within the image are present.

The core of this paper presents a new dilation for
multivariate data (including color images), which is
merely not based on reduced ordering, thus, it com-
prises a “native” treatment of color images. It is based
on the concept of fuzzy subsethood, as introduced in
[9] and interpreted as a fuzzy dominance relation. The
fuzzy data of mutual degrees of dominance are fused by
a minmax operation.

This paper is organized as follows. Section 2 consid-
ers various approaches to a multivariate or color mor-
phology and some requirements for generalized dila-
tion operations as a whole (Section 2.1). Based on Bar-
nett’s classification of multuvariate ranking schemes
[1], all approaches can be subdivided into three classes
(Section 2.2). Sections 2.2.1 and 2.2.2 deal with gener-
alized morphologies based on marginal and reduced
ordering, which cover most of the multivariate mor-
phologies proposed so far. As a new aspect, given in
Section 2.2.3, partial ordering is reflected by the concept
of a Pareto-Morphology. In addition, in Section 2.2.5, the
complete ordering scheme [13] is considered, which
does not fit into one of the categories of Barnett. Then,
Section 2.3 considers the proposed Fuzzy-Pareto-Mor-
phology (FPM). At first, in Section 2.3.1, the geometric
sets-as-points approach of Kosko is recalled. The fuzzy
dominance relation is introduced in Section 2.3.2. In
Section 2.3.3, the definitions of FPM are given along
with an example, Section 2.3.4 gives some properties of
the FPM together with their proofs, and Section 2.3.5
introduces some other color image processing opera-
tions based on the same concept. Then, in Section 3, the
approaches are discussed. The paper ends with a short
summary in Section 4.

2. APPROACHES
TO MULTIVARIATE MORPHOLOGY

 

2.1. Requirements for a Generalized Dilation

 

The basic operations of mathematical morphology,

 

dilation

 

 and 

 

erosion

 

, are defined in terms of the com-
plete lattice theory [11]. A set 
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 with a partial ordering

is a complete lattice if each of its subsets possesses a
supremum max and an infimum min according to the
partial ordering. Given two complete lattices 
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)], whereas max
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 refer to the defi-
nition of the supremum operator on the complete lat-
tices 

 

+

 

 and 

 

}

 

, respectively. It is called an 

 

erosion

 

, if it
commutes with the infimum operator.

If 

 

}

 

 and 

 

+

 

 are identical, the supremum operator
itself is a dilation, and, conversely, each dilation gives
a partial ordering of 

 

+

 

, for which it is a dilation as well.
In this case, the definition of a dilation (and an erosion,
too) can be considered to be given by specification of a
ranking scheme.

Color images can be considered as given by a color
image function 
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, where

 

$

 

p

 

 is the image domain, usually a rectangular subset of
the coordinate plain, and 

 

p

 

max

 

 is the maximum intensity
value for one color channel. The lattice 

 

+

 

 is given by
the set of all possible triples of color value components,
i.e., a given instance of a color space. Usually, the sec-
ond lattice 

 

}

 

 is given by the same color space. The
chosen color space should be fixed in the following,
and all of its channels are assumed to have the same res-
olution.

In order to define a dilation (or erosion) operation, a
concept for a supremum (or infimum) is necessary. In
case of color data, this is implied by a multivariate
ranking scheme. If a set operator 

 

P

 

, which assigns a
supremum to a set of color values (what will be dis-
cussed in the next subsection) is assumed to be given,
the definition goes on as follows. Let 

 

a

 

 and 

 

b

 

 be struc-
turing elements, e.g., defined as a set of offsets with 

 

a

 

,

 

b

 

 

 

⊂
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 and with respect to a central point. Thus, a struc-
turing element defines a neighborhood M for each pixel
of the image. Then, a 

 

color dilation
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 is a set function
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, which commutes with the
supremum operator 

 

P

 

. Similarly, a color erosion 

 

*

 

 is a
set function which commutes with the infimum opera-
tion. If both operations are dual operations (i.e., 

 

*

 

 = 

 

C

 

⊕

 

 

 

C

 

 with 

 

C

 

 being an image complement operation),
color dilation and color erosion together give the basic
operations of a color morphology. In the following,
only the case of color dilation is studied. The discus-
sions may be equally applied to the case of a color ero-
sion.

The color dilation 

 

⊕

 

 will assign a new color value

 

p

 

new

 

 

 

∈

 

 

 

+

 

 at each image position (

 

x

 

, 

 

y

 

), which is com-
puted from the color values of the pixels in the neigh-
borhood of (

 

x

 

, 

 

y

 

). More formally,

Not all properties of a generalized dilation follow
from the requirement, that a dilation commutes with the

pnew x y,( )
=  ⊕  ° p k l,( ) k x i l y j i j, , a∈+=,+={ } .
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supremum operator. For judging the practical impor-
tance of a generalized dilation, especially in the context
of color image processing, the following properties will
be checked for several approaches to multivariate mor-
phology:

1. The color dilation should be 

 

color-proof

 

, i.e., 

 

P

 

should just select one color value out of the set M of
color values within the neighborhood of a pixel. This is
quite important for the processing of color images, due
to the fact, that newly introduced colors within the
result image might appear as artifacts of cluttering.
This requirement could be relaxed by using the HSI
color model and preventing introducing new H compo-
nents only. In [13], this property is referred to as 

 

vector-
preserving

 

.
2. A color dilation should be an extensive opera-

tion, i.e.,

 

p

 

 

 

⊕

 

 a ≥ p,

where the meaning of ≥ is used according to the key
idea of sorting, as it was mentioned in the introduction.

3. When ⊕ B assigns standard binary dilation, the
color dilation should be compatible with the operands
of this operation, i.e.,

where a and b have the same central point. Some algo-
rithms of mathematical morphology make use of this
property for faster computation of the dilation by
decomposing (if possible) the structuring element into
simpler ones.

4. In the context of multivariate data, a color dilation
should become a standard grayscale dilation, if the dif-
inition of ⊕  is restricted to the one-dimensional (or
univariate) case.

There are much more properties of a generalized
dilation or erosion to consider (see [2] for a comprehen-
sive collection). However, generalizing the concept of
standard mathematical morphology to another applica-
tion field (such as color images) is an inductive process,
not a deduction. Once the basic requirement of a dila-
tion (to commute with the supremum) is fulfilled, all
other properties will be either strongly related to this
property, directly follow from it, or they will provide a
means to estimate possible application fields of the
newly designed operations. They will never give the
proof that the given definition of a generalized mor-
phology is wrong.

2.2. Multivariate Ordering

For a lattice + to be complete, an operation must be
given which assigns a supremum to each subset of the
lattice. While there is a “natural” sort order for univari-
ate (or one-dimensional vector) data, the extension of
ordering to multivariate data is a great controversy. In
[1], multivariate ranking schemes known so far were
classified into four categories: marginal ordering,

p a⊕( ) b⊕ p a ⊕ B b( ),⊕=

reduced ordering, partial ordering, and conditional
ordering. Since the operation, which assigns the supre-
mum to a set by means of a given ranking scheme in the
lattice + can be considered as a multivariate dilation
from the lattice + in +, these categories can be used for
classifying multivariate morphologies as well. Only con-
ditional ordering seems to be inappropriate for designing
new morphologies, because its ordering scheme is based
on statistical properties of the vectors, which are to be
sorted. But, in practive, most structuring elements are
not big enough for revealing the underlying statistical
distribution. We leave this question open for further
research.

In the following, these ranking schemes will be
given in more detail, and their relations to the accompa-
nying dilations will be discussed. For illustration pur-
poses, the multivariate example set

will be used.
2.2.1. Marginal ordering. An example for a color

dilation based on marginal ordering (referred to as a
marginal morphology) is given by applying a univariate
supremum function P component-by-compontent:

For the set F, this procedure gives the result vector

which in not an element of the example set. Marginal
ordering, if used as color dilation, will produce new
color values within the result image, thus violating
property 1. Colorplate 1c shows the marginal dilation
of the image of colorplate 1a with superimposed noise
(colorplate 1b). The disturbed color appearance, as a
result of newly appearing color values, can be clearly
seen.

In general, a marginal ordering assumes the color
image to be split up into a set of channels Ci (e.g., by
using the vector index operator, which assigns to vector

 its ith component), in a manner from which the color
image can be fully recovered by merging the channels.
Then, a univariate ordering is applied to each channel,
and the processed channels are merged to the result
image. Well-known examples for such splittings are the
RGB-, HSI-, Lab-, and CMYK-decomposition. An
extreme case of channel splitting was presented in [3].
There, to each color, which is present in the color
image, its own channel is assigned, i.e., the number of
channels is equal to the number of different colors in
the image. The numeric value of the channel of color
value c at position (x, y) is 1, if the color image has
color value c at this position, 0 otherwise. The color
morphology derived from this channel splitting was

F 2 3 5, ,( ) 4 1 6, ,( ) 2 2 4, ,( ) 1 1 1, ,( ), ,{ }=

Pmarg ° px py pz, ,( ){ }
=  P ° px{ } P ° py{ } P ° pz{ },,( ).

max 2 4 2 1, , ,[ ] max 31 2 1, ,[ ] max 5 6 4 1, , ,[ ], ,( )
=  4 3 6, ,( ),

v
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applied to the postprocessing of color-labeled segmen-
tation images. It allows for using a priori knowledge of
segment properties to be employed for the composition
of morphological operators. A new class of morpholog-
ical operators is presented in [3], including the so-
called tunneling and bridging operations; this defini-
tions can only be given for marginal morphologies.

From this, the objections against marginal morphol-
ogies, as given, e.g., in [5] and [13], should be weighted
more carefully in future works.

Marginal morphologies do not fulfill property 1, but
they fulfill properties 3 and 4. Due to its own ordering
scheme, they also fulfill property 2 (see Section 2.1).

2.2.2. Reduced ordering. By reduced ordering, a
scalar parameter function f is computed for each color
value of the multivariate data set S. The ordering is per-
formed according to the resulting scalar values,

Either function f could be used, e.g., f (x, y, z) = x + y +
z, f (x, y, z) = max[x, y, z] or f (x, y, z) = xy – z. Color-

Pred ° px py pz, ,( ){ } f p( )[ ] ,
p M∈

argmin=

(a) Orriginal image (b) Superimposed noise

(c) Marginal morphology (d) Reduced morphology (r + g + h)

(e) Reduced morphology (b only) (d) Fuzziy-pareto-morphology

Colorplate 1. Effects of different color morphologies on synthetic image.
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plates 1d and 1e give two examples, using the parame-
ter functions f (x, y, z) = x + y + z as an example for a
symmetric function f, and f(x, y, z) = z, which is not
symmetric. In these examples, x, y, and z are the numer-
ical values of the red, green, and blue components of
the color value, respectively.

For the exemplary set, if f (x, y, z) = z + y + z, the
reduced dilation gives the vector argmax[f (2, 3, 5),
f (4, 1, 6), f (2, 2, 4), f (1, 1, 1)] = argmax[2 + 3 + 5, 4 +
1 + 6, 2 + 2 + 4, 1 + 1 + 1] = argmax[10, 11, 8, 3] =
(4, 1, 6). Equally, if f (x, y, z) = x · y, this procedure
selects the example vector with the largest product of x
and y component, which is the first vector (2, 3, 5).

Total ordering [4] can be considered as a reduced

ordering. If the sort order of a set of vectors  is

explicitely given as , …,  (or by means of a
space-filling curve, as it was proposed in [4]), the

parameter function is just f ( ) = n – i. However, not
each of reduced ordering gives a total ordering, due to
the possibility, that several values of vector components
give the same value for f. The problem can be patched
by sub-ordering vectors with the same f-value due to
another criterion, hence, each partial order implied by a
reduced ordering can be mapped onto a set of total
orderings. From the authors’ point of view, this is a
rather technical task. If, e.g., the parameter function is
f(x, y, z) = xyz, then the vectors (2, 4, 2) and (1, 1, 16)
will give the same value 16 for f. A total ordering would
assign different positions to both vectors in the ordered
sequence of vectors, hence, it avoids ambiguities. What
is needed for a reduced ordering is an additional crite-
rion for deciding, which of both vectors comes first.
This can be simply given (e.g., by adding the sum of the
components to f giving f (x, y, z) = xyz + x + y + z). If
further ambiguities occur, f must be further modified.

v i

v 1( ) v n( )

v i( )

There will always be a modification of f, which leads to
a total ordering. We could call the modified final ver-
sion ftot of f “totalization” of f. Totalization is not impor-
tant for practical reasons (result images will not look
very different), but it complicates mathematical proofs
and the justification of properties. Total ordering gives
a much simpler framework.

An essential property of reduced morphologies (and
total ordering based morphologies as well) is that the
“strength” of each color value in the “competition”
among color values, which takes place at each compu-
tational step of a dilation or erosion (the competition is
won by the supremum or infimum) is assigned before-
hand. It does not depend on the color context. There is
no reasonable objection against this behaviour of
reduced morphologies, but it constraints the possible
outcomes of a morphological processing chain.

Also, it is not expected for a reduced morphology to
perform better than a grayscale morphology applied to
the mapping of the color image onto a single grayscaled
channel by f (including an appropriate normalization).
The channel represents the idea of intensity, which under-
lies the chosen f. Each result, derived from the processed
color image, could be derived from the processed gray-
scale channel as well. This explains the qualification of
such ordering schemes by [1] as reduced. Essential color
information could get lost during the processing, without
gaining anything with respect to the processing goal, thus,
violating Marr’s principle of Graceful Degradation.4 

Reduced morphologies fulfill properties 1, 3, and,
according to the definition of f, also property 4 (see
Section 2.1). Their relation to the property 2 depends
on the concept of a supremum. If this is the maximum
of n values, property 2 is fulfilled.

2.2.3. Partial ordering. The third ranking scheme,
partial ordering,5 differs from marginal and reduced
ordering by possibly selecting more than one value out
of the set of the unsorted values. Partial ranking makes
use of a maximum set operator P: M  2M, which
assigns an element of the powerset of the set M to M.
A typical choice for a maximum set function 3 is the
convex hull of the data set. Then, a sequence of subsets,
Mi of M is derived according to the following rules:

1. M1 = P ° M;

2. R1 = M – M1;
3. Mk + 1 = P ° (Rk – Mk);

4. Rk + 1 = Rk – Mk;
which are applied until Rl = ∅ . All elements belonging
to Mi are said to be of rank i by this partial ordering.
Elements with the same rank i cannot be further distin-
guished by such a method. Partial ordering iteratively
strips off maximum subsets of the data set, until the
remaining set is empty (see Fig. 1).

4 Degraded input should deliver at least some of the answers.
5 Here, partial ordering has a different meaning than the partial

ordering of a lattice +.

rank 1rank 2

rank 3

x

y

Fig. 1. Partial ordering of 10 points by convex hul operator.
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In order to use partial ordering to define a multivari-
ate dilation, an additional procedure has to be supplied
for selecting exactly one value out of the set of the
stripped-off maximum subsets. This has been consid-
ered as an important disadvantage of the partial order-
ing [5].

2.2.4. The Pareto ordering theorem. Pareto ordering,
which will be described next, gives another instance of a
partial multivariate ordering scheme. It has an important
relation to reduced ordering.

For two vectors  and , it is said that  dominates

, when each component of  is at least as large as the

corresponding component of , and at least one com-
ponent is larger

(1)

The subset of all vectors of the set M, which are not
dominated by any other vector of M, is the Pareto set
(also Pareto front). Let Pp be the subset operator, which
assigns the Pareto set to a set of vectors. The Pareto
operator for univariate data is the maximum operation.

In the example set, the vector (2, 3, 5) dominates the
vectors (2, 2, 4) and (1, 1, 1), but it is not dominated by
another vector of the example set. Hence, (2, 3, 5) as
well as (4, 1, 6) constitute the Pareto front of the example
set, or the set of vectors of rank 1 (M1). Then, R1 is the set
{(2, 2, 4), (1, 1, 1)}. Here, (2, 2, 4) dominates (1, 1, 1). The
set M2 of vectors of rank 2 is {(2, 2, 4)}, and the set of
vectors of rank 3 is {(1, 1, 1)}.

The Pareto set describes the possible solutions of a
multiobjective optimization problem [6]. According to
the problem statement, every solution, which gives an
element of the Pareto set, when their multiple criteria
are computed, will be optimal in this generalized sense.

The following theorem holds for a partial ordering
based on the Pareto operator as maximum set function:

Theorem 1. A reduced ordering with a monotonic
increasing scalar function commutes with the Pareto
ordering.

Proof. The theorem states, that the vector  with
the maximum value fmax of f is an element of the Pareto

set. If not, there is a vector  which dominates .

Since f( ) is the maximum value of f, f( ) < fmax.
From dominance relation, it follows that all compo-

nents of  are not smaller than the corresponding

components of f( ) and at least one component is

larger. But, by monocity of f( ) < fmax, it follows that

f( ) ≥ f( ), which is a contradiction.

a b a

b a

b

a >D b i ai bi≥( )∀ k ak bk>( ).∃∧

vmax

v d vmax

vmax v d

v d

vmax

v d

v d vmax

If f is not monotonic, the theorem does not hold.

Consider, for example, the function f(x, y) = sin x +

sin y and its values f(1, 1) = 2, f(2, 2) = 0, and f(1, 3) = 0.

Since the Pareto set is given with {(2, 2), (1, 3)}, the
selected point with the maximum value of f is (1, 1).

Hence, Pareto ordering gives a partial ordering on
the set lattice + of n-dimensional vectors. Each dila-
tion, which commutes with the Pareto ordering, is
defined as a Pareto-Morphology. The set of all Pareto-
Morphologies is not empty, since monotonic reduced
morphologies belong to this class. The question now is,
whether it also holds, that every dilation, which com-
mutes with Pareto ordering, has to be a reduced mor-
phology.

2.2.5. Complete ordering. In [13] an ordering
scheme is presented, which does not directly fit into
one of the categories of Barnett. A supremum operator
P gives a complete ordering, if it fulfills the following
conditions:

1. If S is a subset of the lattice +, then there is an
xi ∈  S with B(S) = xi .

2. For all x1 and x2 from + P{x1, x2} = x1 and P{x2,
x1} = x2 iff x1 = x2.

3. For all x1, x2, x3 ∈  + from P{x1, x2, x3} = x1 and
P{x2, x3} = x2 it follows that P{x1, x3} = x1.

Each total ordering scheme fulfills these properties,
as well as the totalization of a reduced ordering. How-
ever, not each of supremum operators with these prop-
erties must give a total ordering, because none of these
properties links the cases of different numbers of ele-
ments, to which the supremum operation is applied. For
example, the relation, that P{x1, x2} = x1 follows from
P{x1, x2, x3} = x1, which is obviously true for the
univariate case, cannot be derived from these three
properties, since none of them is concerned with terms
like P{x1, x2, x3}. Despite the fact, that each set of vec-
tors could be ordered pairwise, the ordering for three or
more values at once may depend on all values which are
to be sorted. This is a feature, which is strongly related
to the fact, that the data are multivariate and not univari-
ate. For multivariate data, it could be possible that the
supremum of, e.g., (x1, x2, x3) is x1 but the supremum of
(x1, x4, x3) is x3.

Since the supremum of a compete ordering is not
related to the magnitudes of the components of the vec-
tors, it can not be decided from these properties,
whether the dilation based on this supremum operator
(called δ-operator in [13]) gives a Pareto morphology
or not.

Complete orderings include the set of all total order-
ings, but there may be other complete ordering
schemes, which does not give a total ordering. The
same question as for Pareto morphologies appears.

π
2
---

π
2
---
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Does it follow from the fact, that an ordering is com-
plete, that it must be a total ordering as well?

The answer to both questions is negative. In fact,
there is a dilation, which gives a Pareto morphology,
and is not based on reduced ordering; and which uses a
complete ordering, which does not give a total ordering
as well. This dilation, based on fuzzy concepts for rank-
ing values, will be presented in the next section.

2.3. Fuzzy-Pareto-Morphology

2.3.1. Sets-as-points approach to fuzzy sets. Gen-
erally, a fuzzy set is given by the membership degrees
of its elements

} = (µ1, µ2, …, µn).

Kosko noted [9] that this gives a functional description
of a fuzzy set. He urged for a visualization of fuzzy sets,
which may help to understand them better. The idea is
to represent fuzzy sets as points in the n-dimensional
unit square (or unit cube) by using the membership
degrees as coordinates. Some definitions can be given
geometrically, as shown in Fig. 2 for the case of two-
dimensional fuzzy sets. If the fuzzy set is A = (µ1, µ2),
then AC is the complementary fuzzy set. The corners of
the square represent the “crisp” sets, with membership
values out of the set {0, 1}. The ratio of the length a of
the shortest connection of A to a corner to the length b
of the longest connection to a corner is defined as fuzzy
entropy. The fuzzy entropy is lowest (0) for crisp sets
and maximum for the midpoint of the square.

The rectangle, which is spanned by the empty set (0, 0)
and the fuzzy set A (the dark area in Fig. 2), is the pow-
erset of A, since it contains all fuzzy sets B = (ν1, ν2),
for which ν1 ≤ µ1 and ν2 ≤ µ2. By membership domina-
tion, these are the fuzzy subsets of A [14]. Its area will
be denoted by M(A).

Starting off from the relation for ordinary sets

A ⊂  B iff A ∈  2B

in [9], a fuzzy extension of the term subsethood is
derived, giving the degree of a fuzzy set A to which it is
a subset of a fuzzy set T. This measure is the amount of

fuzzy subsets of A, which are also fuzzy subsets of T, to
the total count of fuzzy subsets of A:

.

2.3.2. Fuzzy dominance relation. Color values can
be considered as fuzzy sets, with each of the numerical
values of a component being the degree of membership
to this basic component color, for at least three reasons:

—Color descriptions are not strictly defined. Names
like “pale blue” or “velvet blue” can be interpreted as
fuzzy descriptions as well.

—Fuzziness of colors is related to the manner in
which colors are perceived. Color response curves can
be modelled by Gaussian-like shaped receptive fields,
proving that the perception of a certain color is not
restricted to a certain wavelength, but is activated by
nearby wavelengths as well. In [8], it was shown that
fuzzy logic best models the perception of colors.

—Color combinations gives colors, where color
components (e.g., in a RGB model) do not depend on
the combined colors in a linear manner. Nonlinearity of
color fusion can be best modelled by means of fuzzy
concepts as fuzzy integral.
If color values are interpreted as fuzzy sets, the sets-as-
points approach to fuzzy logic gives color values as
points in a three-dimensional unit cube. Then, member-
ship dominance equals the dominance relation, which
was used for the definition of the Pareto set. The degree
of subsethood of one color value within the other can be
interpreted as “soft dominance”. If two color values
C1 = (r1, g1, b1) and C2 = (r2, g2, b2) are given (e.g., in
RGB color space), then the area of the intersection is
given by

The degree of dominance of C1 over C2 is defined by
the ratio

The degree of dominance of a over b is defined to be 0,
if b is the empty fuzzy set, and 1, if a is the whole set.
If C1 dominates C2 in the sense of Eq. (1), C1 ∩ C2
equals C2, and the ratio is 1.

For M(C2) = 0, the ratio is not defined. The color
value C2 lacks at least one color component. Since
M(C1 ∩ C2) = 0 in this case, too, the fraction becomes
a “0/0” expression, which has no definite value. There
are two possibilities to assign a value: to count only
subsets for the remaining dimensions; or to set it defi-
nitely to 0, since the volume of a (n – 1)-dimensional
area in the n-dimensional space is 0. For simplicity, a
small positive value can be added to all color compo-
nents as well, thus, avoiding the division by zero (but
this seems to be a rather technical patch). 

S A T,( ) M A T∩( )
M A( )

-------------------------=

M C1 C2∩( ) min r1 r2,[ ]min g1 g2,[ ]min b1 b2,[ ] .=

µD C1 C2,( )
M C1 C2∩( )

M C2( )
------------------------------ S C2 C1,( ).= =

(01) 

(00) (10)

(11)
a

b

Ac Crisp set

Fuzzy enteropy a/b

Maximally fuzzy set

Powerest of A

A = (µ1µ2)

Fig. 2. Geometric representation of fuzzy sets as points in
the unit square.
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Fig. 3. Illustration of the Fuzzy-Pareto-Dilation (see text for
details).

2.3.3. Fuzzy-Pareto-Morphology. So far, the strict
definition of dominance has been fuzzified. Now, each
pair of color values, if considered as fuzzy sets, is dom-
inated by each other color value to a certain degree. For
unifying all this information into a single ranking crite-
rion, a fuzzy fusion operation has to be applied. We
consider the most simple minmax fuzzy fusion opera-
tions of the kind

When  is given with the set of fuzzy dominance degrees
of one color value over all other color values, this leads to
the definition of Fuzzy-Pareto-Morphology.

If the neigborhood M of a pixel is given by n pixels
with color values xij with i = 1, …, n and j = 1, 2 or j =
1, 2, 3,6 then the Fuzzy-Pareto-Dilation (FPD) is given
by the set function:

(2)

The accompanying Fuzzy-Pareto-Erosion (FPE) is
given as the complement of this operation according to:

(3)

Both FPD and FPE constitutes the basic operations of
the Fuzzy-Pareto-Morphology.

Figure 3 illustrates the procedure behind the FPD at
a given image location p for the two-dimensional case.
The structuring element chooses the four neighbors of
the pixel p and p itself. The points belonging to the
color values at these five positions are marked in the unit
square (Fig. 3a). These values are {(0.4, 0.6), (0.6, 0.3),
(0.8, 0.1), (0.15, 0.5), (0.3, 0.15)}.

Due to property 1 (see next subsection), all domi-
nated points are removed (Fig. 3b). These are the points
(0.15, 0.3) (dominated by (0.4, 0.6)) and (0.3, 0.15)
(dominated by, e.g., (0.6, 0.3)).

Then, two steps are performed. At first, to each point X
of the remaining three points A = (0.4, 0.6), B = (0.6, 0.3),
and C = (0.8, 0.1) a “partner” P(X) is assigned. The
partner of a point X is the point P(X) which is domi-
nated by X to the highest degree. Consider point A. It is

6 For the purpose of illustration, sometimes only two color-chan-
nels will be considered.

minarg max f p( )[ ][ ] .

f

PFPD

min xij xkj,( )
j

∏

xij

j

∏
-------------------------------------

k i≠
max .

i
argmin≡

PFPE

min xij xkj,( )
j

∏

xij

j

∏
-------------------------------------

k i≠
min .

i
argmax≡

S A B,( ) M A B∩( )
M A( )

------------------------- 0.4 0.3⋅
0.4 0.6⋅
------------------- 0.5= = =

and

The point A dominates B to a higher degree than C,

hence, P(A) = B. Similarly, from S(B, A) = 0.  and
S(B, C) = 0.5, it follows that P(B) = A, and from
S(C, A) = 0.5 and S(C, B) = 0.75 it follows that P(C) = B.

In the second step, the vector X is chosen, which
gives the minimal value of S(X, P(X)), i.e., the one
which is dominated to the lowest degree by its partner:

In the example, this is the point A = (0.4, 0.6). The color
value at position p ((0.6, 0.3)) will be replaced by the
color value of its left neighbor, i.e., the position which
served the point A (see Fig. 3c).

Some remarks about the definition:
There is one drawback inherited from the fuzzy sub-

sethood definition: the degree of dominance cannot be
exactly defined, when one color component is 0. See
the remarks at the end of subsection 2.3.2 for the possi-
ble treatment of this case.

S A C,( ) M A C∩( )
M A( )

------------------------- 0.4 0.1⋅
0.4 0.6⋅
------------------- 0.16.= = =

6

X argmin S A P A( ),( ) S B P B( ),( ) S C P C( ),( ),,[ ]=

=  argmin S A B,( ) S B A,( ) S C B,( ), ,[ ]

=  argmin 0.5 0.6 0.75, ,[ ] A.=
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It is useful to restrict the derivation of the terms in
Eqs. (2) and (3) to differing values of p, i.e., to neglect
multiple occurrences of the same color value in M.

The value in Eq. (2) depends on the chosen color
model. This cannot be prevented, for there will be no
ranking independent of the color model. In some cases,
several color values will give the same values (e.g., a
nieghborhood in an RGB-image with one point red, one
point blue, and one point green). Hence, the argmin
operation becomes ambiguous. There is no contradic-
tion, because the ranking does not prefer any one of the
basic colors (it should not do so). In this case, a total-
ization procedure, similar to that for the reduced order-
ing, can be used as well, e.g., derived from a fixed
arrangement of the three basic colors. The random
choose of a argmax color value would have the disad-
vantage that the results of the FPD could be different in
areas where the neighborhoods are the same.

2.3.4. Properties of the Fuzzy-Pareto-Diation. In
the following, some properties of the FPD are given.

Property 1 FPD is a Pareto-Morphology.
Proof. All dominated points go with the maximal

value 1 into the competition for the lowest value of the
maxima. Hopefully, a dominated point cannot win, and
the winner will be an element of the Pareto set.

Property 2 The FPD is not a reduced ordering.
Proof. Consider Fig. 4. We assume, that there is a

parameter function f, which gives the same ranking as
the FPD ordering scheme given in Eq. (2). If we take
the three points (1, 10), (9, 2), and (10, 1), the point
selected by FPM is (1, 10). If we take the three points

(1, 10), (2, 9), and (10, 1), the selected element will be
(10, 1). But, both sets have two points in common,
which exchange their ranking. If there is such an f, it
must be f(1, 10) > f(10, 1) from the first case, but also
f(1, 10) < f(10, 1) from the second case. This is not pos-
sible, hence, there is not such an f.

For a better understanding of this fact, one has to
consider what is finally selected by the ordering
scheme of FPM. It is the most exotic color value in the
context of the other color values. The “strengths” of
each color value in the competition is influenced by the
presence of other color values. Two similar color values
will choose each other as partners (we refer to the
explained example given above) and have a high degree
of mutual dominance. From this, it is improbable that
one of them will give the minimum degree of being
dominated by its partner. So, the alternating points
(2, 9) and (9, 2) are chosen in the proof to demonstrate
the weakening of the “strengths” of the color value, to
which they are nearby, in the competition.

Property 3 For exactly two points, FPD is a reduced
ordering.

Proof. The parameter function for ordering is the
product of the components of p, as it follows from
the examination of the expression in Eq. (2) for this
case:

However, both nominators are equal, hence, the selec-
tion is equal to

i.e., the product of the components is the scalar func-
tion which gives the reduced ordering.

Now, it can be seen, how FPD is related to complete
ordering (see subsection 2.2.5). Due to FPD being a
reduced morphology for two points, property 3 of a
complete ordering is fulfilled as well. But it must not
hold that P{x1, x2, x3} = x1 follows from P{x1, x2} = x1.
Fuzzy-Pareto-Morphology is an example for a com-
plete ordering which is not a total ordering.

Property 4 FPM reduces to grayscale morphology,
if each point is a scalar value.

Proof. This follows directly from the Pareto Order-
ing Theorem, because the Pareto set in the one-dimen-
sional case has just one element, the maximum value.
Because FPD selects from the Pareto set, it must take
the maximum. This is the supremum set function of

min x1 j x2 j,( )
j
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Fig. 4. Counterexample for reduced ordering.
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grayscale dilation. In a similar manner, it can be veri-
fied that univariate FPE select the minimum value.

Property 5 FPD is not compatible with binary dila-
tion.

Proof. Consider the structuring elements given in
Fig. 5. Because each of the left structuring elements
contains two points, by property 3, FPD is reduced
ordering with the product of the components as scalar
function. This means, that the consecutive application
of both structuring elements would select the color
value with the largest product of its components out of
the four positions covered by the structuring element on
the right side of Fig. 5. But then, the FPM would be a
reduced ordering according to the product of elements
for four points, too! In the proof of property 3, an exam-
ple for three points was given for which this was shown
to be impossible.7

2.3.5. Other color operations derived from fuzzy-
subsethood. Based on the concept of fuzzy-subset-
hood, other operations for color image processing can
be designed. Some examples will be given in the fol-
lowing:

• A color threshold operation can be defined, for
which the result image is not a binary but a grayscale
image. Given p = (px, py , pz), the gray value at each
image position with color value v is the degree of sub-
sethood of the color value v in p.

Despite of its simple nature, color thresholding
allows for the design of useful operation, for example
highly sensitive color texture filters. Consider the color
textile example given in colorplate 2a. The HSI repre-
sentation of this image is thresholded twice, with color
threshold (0, 200, 100) and with color threshold
(0, 108, 80) (the color thresholds are taken from {0, …,
gmax} and rescaled to [0, 1]). The result of the second
thresholding is subtracted from the result of the first
thresholding by pixelwise subtraction of the gray val-
ues. The resulting image is given in colorplate 2c. For
comparison, the standard gray value transformation of
color images is given in colorplate 2b. As can be seen
from the threshold difference image 2c, the seemingly
homogenuous background texture of the textile reveals
its pecularities. These are due to surface faults, but also
due to errors in the shading correction of the used scan-
ning device.

• A fuzzy color image subtraction operation of two
images p1 and p2, by which the degree of fuzzy-subset-
hood of the color value of p1 in the corresponding color
value in p2, multiplied by the original color value, is
assigned to each image position.

This is important for, e.g., the difinition of the mor-
phological gradient in FPM. In gayscale morphology,
the morphological gradient is the difference of dilated
and eroded image by the same structuring element.
However, simply subtracting two color values would

7 For the fourth point, choose one which is dominated by one of our
example, as (1, 9).

introduce alien color values in the result image. By
replacing subtraction with the mutual fuzzy-subset-
hood operation, this is prevented.8 

With this operation, edge operators from morphol-
ogy can be used in applications.

• The selection scheme of Eq. (2) actually computes
values, for which the argument leading to the smallest
value is taken as a result. However, the lowest value itself
can be taken as a gray value, and a grayscale image can be
constructed this way (the so-called M-image).

These operations may support the processing of
color images by the newly proposed FPM.

3. DISCUSSION

3.1. Comparison of Color Morphologies

In Fig. 6, the relations between the different
approaches to multivariate morphology are shown. While
marginal morphology gives an isolated cluster, all other
morphologies, are instances of a vector-preserving mor-
phology. Among them, reduced morphologies, complete
morphologies and Pareto-Morphologies form the basic
cluster, and they partially overlap. As an example of a
Pareto-Morphology, which is not a reduced morphol-
ogy, the FPM is proposed in this paper.

Colorplate 1 demonstrates the effects of each class
of multivariate morphologies for a synthetic test image.
The test image was designed by applying the limbstone
filter provided with Adobe Photoshop onto a smoothed
selection within an image, which was completely filled
with yellow RGB color value (200, 200, 1) (colorplate 1a).
After that, blue salt and pepper noise was spread over
the whole image with a unique color value (50, 50, 100)
(colorplate 1b). Thus, the test image contains two
regions—a two-color region of blue dots on yellow
background, and a textured region, with blue dots on
smoothly varying yellow color values. The different
approaches to color morphology were applied to the
image of colorplate 1b. This example image was pro-
vided in order to demonstrate the apparent differences
in the effects of applying the different color morpholo-
gies onto images. The purpose is not a specified image
processing task such as noise filtering, etc.

The result of marginal ordering is given in color-
plate 1c, Clearly, the marginal ordering creates color
values, which were not present within the input image.
In the two-color case, the new color in the neighbor-

8 Multiplying all components of a color value by the same scalar
gives a physiologically similar appearing color.

=

Fig. 5. Example of incompatibility of Fuzzy-Pareto-Mor-
phology with binary morphology.
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hood of each blue dot is (200, 200, 100). Colorplate 1d
gives the result of reduced ordering with parameter
function f(r, g, b) = r + g + b. All blue dots are filtered,
because the sum of its components (200) is too small to
compete with the sum of the components of the yellow
color values (about 400).

The opposite effect is shown in colorplate 1e,
when the parameter function for reduced ordering is
f (r, g, b) = b, i.e., when b is preferred. Then, the blue
dots are dilated, and the underlying texture becomes a
little bit brighter.

Finally, colorplate 1f gives the result of the FPD.
The test image was chosen so as to enhance an impor-
tant property of FPM, its color context dependency. In
the two-color region, the FPM is a reduced morphology

Fuzzy-Pareto-

Reducel Morphology

Vector-Preserving Morphology

Marginal Morphology

Morphology 

Pareto-Morphology

 

Complete Morphology

 

Fig. 6. Relations between different multivariate morpholo-
gies. 

(a) Color textile image

(b) Standard grayvalue transformation (c) Difference of two color threshollds

Colorplate 2. Comparison of color thresholds and standard gray value transformation.
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with the parameter function f(r, g, b) = rgb. Hence, all
blue dots are filtered, as in colorplate 1d. But, in the
case of small variations of the yellow background, we
have the situation, which is presented in Fig. 4. In the
local competition among the color values, the nearly
similar yellow color values mutually cancels each
other. The winner is the most “exotic” color, i.e., the
blue dot. In this situation, the procedure becomes very
sensitive to small inhomogenities of the background.
For the inner part of the texture, where the contrast is
much higher, the mutual cancelation of the yellow color
values is not as strong than in the bordering region of
the texture, thus, the yellow color remains strong
enough to win against the blue values.

The effects of relative color strengths can be seen.
FPM does not assign absolute color strength to a color,
as the reduced morphology does. A possible framework
for making use of this property can be seen as well. The
blue dots act like a probe for an image localization with
a small (possibly, very small) inhomogenity in color.
However, this effect depends on the actual chosen color
values (here, yellow and blue). If RGB color space is
used, in many cases, FPM behaves similar to a reduced
morphology (see example 2 in the next subsection).
This shows, that the proper choice of a color model or
its transformation is an important preprocessing step
for the application of color morphology in general.

3.2. Examples for Fuzzy-Pareto-Morphology

We only consider Fuzzy-Pareto-Morphology for
examples, since it is the only color morphology, which is
newly proposed in this parer. Examples for marginal and
reduced morphologies can be found in [3, 5 and 13].

The motivation to develop a new color morphology
arose from the needs of processing colored textiles.
Instead of a general procedure for processing either kind
of a textiled surface, it was decided to provide a toolset of
operations, by the combination of which complex prob-
lems could be solved. From grayscale morphology,
mathematical morphology is well known to comprise
such a toolset. Hence, this versatility should be pre-
served for a color morphology. In the following, two
examples are given for the application of the FPM in
order to solve detection tasks.

Example 1 (colorplate 3a) demonstrates the detec-
tion of thread faults in a color textile. The structural
property of the horizontal orientation of treads is used
by the FPM. The structuring element is a vertically ori-
ented mask of size 7. If opening, i.e., dilation followed
by erosion, is applied with this mask, the thread is fil-
tered out.

Example 2 (see colorplate 3b) demonstrates the
detection of blots in a colored texture. From left to
right: the original image part;9 the result of FPM dilation
with a structuring element of size 3 × 3; the result of apply-

9 The arrow is just for marking the fault, but it is processed as well.

ing this operation twice; and the result of applying it three
times. Colorplate 3c shows the M-image of the third
dilation in colorplate 3 b. The blots are clearly indi-
cated.

4. SUMMARY

In this paper, the Fuzzy-Pareto-Morphology (FPM)
was proposed and its relation to general issues of color
morphology was intensively discussed. Past theory of
multivariate ranking defined four classes of multivari-
ate ranking schemes; among them, the class of reduced
ordering can be used for designing a color morphology,
which is vector-preserving, i.e., it doesn’t introduce
new color values into the result image. Also, the con-
cept of the Pareto set of multivariate data sets gives a
means for replacing the supremum, which is used in
grayscale morphology. A class of generalized morphol-
ogies, the so-called Pareto-Morphologies, was pro-
posed, which includes generalized morphologies based
on reduced ordering by a monotonic ordering function.
A generalized morphology is a Pareto-Morphology if
its result does not change, when its computations on the
pixel nieghborhood are restricted to the Pareto set of
this neighborhood of a pixel. This property extends the
usually required property of a dilation to commute with
the supremum.

The question, whether there is a Pareto-Morphol-
ogy, which is not based on reduced ordering, got a pos-
itive answer with the proposal of the Fuzzy-Pareto-
Morphology (FPM). In order to design the FPM, the
concept of fuzzy subsethood of fuzzy sets within other
fuzzy sets was applied to color values.

The advantage of the FPM of being not based on
reduced ordering is the more natural color treatment of
color images. It was shown, that FPM is vector preserv-
ing, too, and that it becomes the standard grayscale mor-
phology, if it is considered for the case of one-dimensional
data. However, the reguirement for compatibility is not
fulfilled for structureless (noisy) images.

Other operations can be designed, based on the FPM
(e.g., opening, closing, morphological gradient), or
based on the concept of fuzzy subsethood (fuzzy sub-
traction of two images, color value “thresholding”).
Also, intermediate results of the computations of FPM
can be re-used as new image processing operators (like
the M-image).

The FPM’s and its accompanying operation’s versa-
tility for solving complex color image processing tasks
was demonstrated by some examples, which were
taken from the field of color textiles fault detection.

Currently, we are studying the interplay of different
color spaces with the FPM outcome, and the adaptation
of the scalar function of reduced ordering based mor-
phologies to the color appearance in a textile image.
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