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Abstract

 

—This paper considers various aspects of generalizing mathematical morphology towards a fuzzy dis-
cipline. Since mathematical morphology and fuzzy theory are both based on a set theory, there are many
approaches for defining dilation and erosion operations of a fuzzy morphology. Among those approaches are:
the alpha-Morphology; the triangular norm based approach of Bloch; the logical approach of Sinha and Dough-
erty and de Baets; and the fuzzy fusion based approaches.
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Mathematical Morphology comprises an important
toolset for analyzing spatial structures in images [12,
19, 20, 23]. For binary images, the definitions of the fun-
damental morphological operations—dilation and ero-
sion—can be related to the set-theoretic Minkowski addi-
tion and subtraction. The extension of those operations to
grayscale images is strongly related to ranking operations
and, therefore, to the concept of ordered sets.

It has been considered for a long time how to extend
mathematical morphology to the case of fuzzy sets (as
was done in other image processing disciplines, e.g.,
see [18]). Although there was a simple idea to consider
grayscale images as fuzzy versions of binary images,
further works concentrated on the solicitation of a more
reasonable and nontrivial concept of a fuzzy morphol-
ogy [6, 8, 11, 13, 27]. Those works have culminated in
the proposal of a new operation, using fuzzy structuring
elements and basing on fuzzy level sets (referred to as
alpha-morphology in the following).

Now, it becomes more and more obvious that the
intermixing of two concepts, which are primarily based
on set theory (fuzzy logic and mathematical morphol-
ogy), leads to a multitude of different approaches.
There were also proposals of more and more opera-
tions, which also fuzzify the standard morphological
operations, but differ entirely from alpha-morphology.

This paper gives a survey on the various concepts of
a fuzzy mathematical morphology; the most prominent
fuzzy morphology, the alpha-morphology, is intro-
duced. This approach is based on the level (or alpha-)
sets of a fuzzy membership degree function. Since each
level set is a classical set by itself, standard morpholog-
ical operations can be applied to them. After doing so
for each level, the dilated or eroded level sets can be re-
unified to a grayscale image. Bloch 

 

et al.

 

 provided a
formula for simplifying this computation [6].
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However, by investigating the use of triangular
norms in this simplification, Bloch 

 

et al.

 

 discovered a
further family of fuzzy morphologies [5, 6]. For the
first time, such operations have a formal degree of free-
dom, by allowing for replacing the occurrence of a min-
imum operation within the analytical expression of the
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 Dilation and erosion of the letter “g” by a circular
structuring element.
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-morphology: the original grayscale image is sliced
at level 

 

α

 

, the slice image is dilated by the sliced mask, and
the results of each slice level are recombined to the result
image.
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operation with either formal expression of a triangular
norm.

Also, Sinha and Dougherty [16, 21, 22] in their
approach considered the interpretation of the inclusion

operation involved in the definition of an erosion as a
logical operation. Then, this logical operation was
fuzzified by means of a so-called inclusion indicator
(i.e., by generalizing an “if-then” [15]). Later on, the
approach was formally refined by de Baets [1–4].

The development of several approaches to fuzzy
morphology was accompanied by the proposal of math-
ematical requirements which had to be fulfilled by a
new fuzzy morphology. The most important set of
requirements was provided by Bloch [6], but this was
far from being perfect. The most general requirements
were given by Serra [19, 20], who basically introduced
a concept of a supremum and possibility to define many
operations from it (a very practical point of view). Fur-
ther requirements ought to be reasonable only in the
sense that they may help to qualify a new operation and
judge a field of application. It has to be noted that the
meaning of some requirements can be fuzzified as well.

Each approach to a fuzzy morphology gives a cer-
tain aspect of the underlying reasoning which has to be
fuzzified. This could be the image data (grayscale
images), the structuring element, or the set inclusion
involved in the definition of Minkowski subtraction.
We also propose the fuzzification of the pixel neighbor-
hood, which leads to a further formal approach to fuzzy
morphology using triangular norms and co-norms, i.e.,
based on general concepts of fuzzy information fusion
[7, 9, 10, 24, 25, 28]. This is exemplified by the trian-
gular norm provided by Dubois and Prade.

Also, the case of multivariate data (color morphol-
ogy) is shortly considered. It comes out that fuzzy
fusion concepts can be used to extend mathematical
morphology to color data as well [14].

The detailed study of fuzzy morphologies can be
considered as part of the efforts to achieve a more gen-
eral viewpoint on image processing itself [17, 26].
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 Illustration for better understanding the Bloch for-
mula: 

 

α

 

-Morphology can be simplified by yielding the
maxmin of image and mask positions, where image offsets
correspond to positions of the 

 

point-inverted

 

 mask.
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 General procedure of the Sinha and Dougherty
approach to fuzzy erosion, which generalizes and fuzzifies
the Minkowski subtraction.
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 The lineage of fuzzy morphologies, as they evolved from each other.
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