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ABSTRACT

This paper presents a framework for the binary processing
of perceptual faults in texture analysis. The framework is
composed of a chain of Binary Pattern Processing Modules
(BPPM). Each BPPM is responsible for a class of percep-
tual faults. In a BPPM, several image operators are applied
onto the preprocessed image. The result images are fused
into a binary image, and a connected component analysis
is performed for extracting fault indicating binary compo-
nents. The whole image is described by a set of fuzzy fea-
tures, and class memberships are derived by using the Cho-
quet integral. Configurations of the framework for the per-
ceptual fault classes strong-contrast faults (holes, cracks),
broad-range faults and low-contrast faults are given, which
are for all non-trivial cases based on the 2D-Lookup algo-
rithm. The presented framework is able to work in the con-
text of objective reproduction of subjective decisions about
texture surface quality, and may be easily adapted to new
technological needs by designing further components or by
modifying existing ones.

1. INTRODUCTION

Traditionally, texture analysis for visual inspection is ap-
plied to the detection of functional faults in textured mate-
rials. Here, the task is to detect a fault, assign it to a fault
class, and deliver processing signals to the superposed sys-
tem. However, economic demands let the detection of per-
ceptual faults become more and more important. The task
now is to detect perceptuable anomalies of any kind, which
might disturb the total visual appearance of the surface tex-
ture. Only part of such faults are of functional nature. This
is especially related to the inspection of materials composed
of organic substances, or to natural textures. Frankly spo-
ken, the customer rejects materials with perceptual faults
not due to malfunction but due to their “uglyness,” with
some relevance to a possible malfunction.

Wooden, metal, paper or carpet surfaces, to name a few,
have been a long-termed research target in this direction
[16]. However, a general attempt to treat this class of in-
spection problems has not been considered so far.

Perceptual fault detection is mainly characterized by the
subjective nature of their interpretation. Different persons

may either rely on the same bad or good impression of a
texture or not. Also, perceptual faults are sticked on both,
local and global image properties. While a floor tile might
succesfully pass all functional fault checks by itself, it may
fail in a pavement due to a perceptual fault (e.g. a large-
scale regularity).

This paper presents a general approach to the detec-
tion and classification of perceptual faults. The approach
is given as a framework, the components of which (Binary
Pattern Processing Modules) are based on the combination
of binarization approaches with fuzzy feature fusion in or-
der to get fuzzy class membership values and to combine
them in a whole texture processing framework.

While the presented framework fits well into the stan-
dard feature classification approach to texture analysis [7]
[8], it solicits the binarization approach to texture analysis
and reflects the subjective nature of perceptual fault detec-
tion.

This paper is organized as follows. Section 2 summa-
rizes necessary prerequisites for the understanding of the
presented framework, the binary texture processing, the 2D-
Lookup algorithm and fuzzy fusion operators. Then, the
framework is presented in section 3. The Binary Pattern
Processing Modules components are presented in the sub-
sections of section 3. Finally, special settings of the frame-
work to cover a broad range of perceptual faults, as they
have been used in industrial projects, are presented in sec-
tion 4. This section may be considered as surrogat for the
more common “Application example” section, but the de-
sign guidelines are the more favoured aspect here. The pa-
per ends with a short discussion on how to measure the per-
formance of such systems by providing a real-world exam-
ple in section 5, the summary and the reference.

Besides of presenting a framework, which can be ap-
plied to a wide range of modern surface inspection tasks,
this paper also presents the aspects of using fuzzy fusion
as feature classification approach, and the new auto-lookup
algorithm.

2. PREREQUISITES

This section recalls some concepts, which are of importance
for the understanding of the presented Binary Pattern Pro-



cessing framework. The issue of binary texture processing
will be shortly discussed in the following subsection. Then,
the 2D-Lookup algorithm will be recalled. This algorithm
is reused in several aspects of the framework according to
the high degree of freedom for its configurational setting.
Finally, aspects of fuzzy fusion are remarked. This is neces-
sary, since fuzzy fusion approaches are not very often con-
sidered as fusion approaches in image processing applica-
tions.

2.1. Binary texture processing

Usually, textures are processed based on grayscale (or color)
information (as exemplified by textbooks on image process-
ing as [4]). However, images representing results of texture
processing are of lower depth, i.e. this may be binary im-
ages indicating texture background by a grayvalue White,
or label images indicating several texture classes.

Hence, the binary texture processing appears to be an
alternative approach to grayvalue texture processing by per-
forming one or more binarization procedures in parallel and
evaluating the binary images in order to obtain a result im-
age, or to get features for classification (see [19] [22] [23]
for related approaches).

The advantage of using binary pattern processing for the
detection of perceptual faults can be seen from the fact that
the representation of a perceptual fault may depend on the
chosen binarization procedure. Hence, such approaches do
not rely on the grayvalue appearance of the fault alone, but
also on the binary components (or binary patterns) obtained
from the fault region by suitable binarization procedures.

2.2. 2D-Lookup

The 2D-Lookup algorithm stems from mathematical mor-
phology [17], [18]. It was primarily intended for the seg-
mentation of color images. However, the algorithm can be
specified for its use on grayvalue images as well.

For starting off the 2D-Lookup algorithm, two operation
images 1 and 2, which are of equal size, need to be provided.
This means that for applying the 2D-Lookup algorithm, it
is necessary to determine two image processing operations,
which are applied to the original image. The 2D-Lookup
algorithm goes over all common positions of the two op-
eration images. For each position, the two pixel values at
this position in operation images 1 and 2 are used as indices
for looking-up the 2D-Lookup matrix. The matrix element,
which is found there, is used as pixel value for this position
of the result image. If the matrix is bi-valued, the resultant
image is a binary image.

Let I1 andI2 be two grayvalue images, defined by their
image functionsg1 andg2 over their common domainP �
N � N :

g1 : P ! f0; : : : ; gmaxg

g2 : P ! f0; : : : ; gmaxg (1)

The 2D-Lookup matrix is also given as an image function
l, but its domain is not the set of all image positions but the
set of tupels of possible grayvalue pairsf0; : : : ; gmaxg �
f0; : : : ; gmaxg,

l : f0; : : : ; gmaxg � f0; : : : ; gmaxg ! S � f0; : : : ; gmaxg:
(2)

Then, the resultant image function is given by:

r : P ! S

r(x; y) = l(g1(x; y); g2(x; y)): (3)

In standard applications, every grayvalue is coded by eight
bit, resulting in a maximum grayvalue of 255. Also, the
domain of the image function is a rectangle. In this case, the
2D-Lookup is performed by the following (object-oriented)
pseudo-code:

for x=0 to img width -1 do
begin

for y=0 to img height-1 do
begin

g1 = g1(x,y)
g2 = g2(x,y)
out(x,y) = l(g1,g2)

end y
end x

To give a simple example for the 2D-Lookup procedure,
gmax = 3 is assumed in the following. Let

g1 :
0 1 2
0 3 3

and g2 :
2 3 1
2 3 2

be the two input images and the 2D-Lookup matrix be given
by

l :

g1
g2

0 1 2 3

0 0 0 1 1
1 0 1 2 2
2 1 2 3 3
3 2 3 3 2

Then, the resultant image is

r :
l(0; 2) l(1; 3) l(2; 1)
l(0; 2) l(3; 3) l(3; 2)

=
1 3 2
1 2 3

In case that the 2D-Lookup matrix is derived from the
2D histogram of the two images (withl(g1; g2) being the
number of simultaneous occurrences of grayvalueg1 in im-
ageI1 and grayvalueg2 in imageI2 at the same location,
normalized by a constantC), the 2D-Lookup algorithm is
referred to asAuto-Lookup.



2.3. Fuzzy fusion approaches

Fuzzy fusion is a long-termed discipline of fuzzy set theory.
Starting of with Sugenos work on fuzzy integrals [21], it
has become a more and more regarded approach in fuzzy
control theory.

Today, several fuzzy fusion operators have been studied.
Major groups of such operators are

� Fuzzy integrals (e.g. Sugeno integral, Choquet inte-
gral [6]),

� Aggregation operators (e.g. Ordered Weighted Aver-
aging [24], Weighted Min Aggregation [1]), and

� Triangular Norms and their co-norms [11].

The advantage of using them in image processing has
been considered in [20] [2] [12] [14]. Three important as-
pects of using fuzzy fusion operators can be noted here: the
admission of an infinity of operators; the possibility of dif-
ferent weightings for coalitions of features (this can not be
adequately represented by linear weighting); and the flexi-
ble representation of subjective reasoning.

Fuzzy fusion operators are used in the presented frame-
work for the derivation and evaluation of features, but for
some of the binarization algorithms as well.

3. THE BINARY PATTERN PROCESSING
FRAMEWORK

The Binary Pattern Processing Framework is basically com-
posed of a processing chain of alternating Binary Pattern
Processing Modules (BPPM),each of which having the same
internal structure, and additional testing modules (see fig. 1).
The texture analysis result is represented as a vector of class
memberships. As an example, if there are two classes (“no
perceptual faults” and “perceptual faults”), the output vec-
tor (0:3; 0:7) will indicate a texture more belonging to the
fault class.

BPPM1 BPPM2 BPPM3Test12 Test23
... BPPMn

Y

ok

YYY Y

F FF

N N
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Fig. 1. The Binary Pattern Processing Framework.

Each BPPM has access to the acquired image and to the
evaluation of the foregoing testing module. The evaluation
(the module output) is given by the class vector, and it may
be composed with the class vector of the foregoing module.
Hence, the processing of each BPPM is independent of the
processing of the others, but may refer to the results of the
foregoing modules.

This indicates an ordering of the BPPMs: modules for
the detection of the more frequent faults, or the more tech-
nical faults, or the more simple to detect faults should come
first in the chain.

3.1. Binary pattern processing module

Each single BPPM is designed for a special fault class re-
lated to the faults appearance. A BPPM is composed of a
Preprocessing submodule, a set ofk (possibly binarization)
procedures (those may use the same binarization algorithm,
with differing numerical or structural parameters), a Binary
Fusion submodule for fusing thek binary images into one
single image, and a Fuzzy Feature Fusion submodule, for
which fuzzy features derived from the connected compo-
nents of the binary fused image are evaluated on base of the
Choquet fuzzy integral (see fig. 2).
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Fig. 2. Structure of a Binary Pattern Processing Module.

3.1.1. Preprocessing

Preprocessing is a necessary step of all image processing
approaches. In this case, it has only to be noted that each
BPPM may have its own preprocessing.

3.1.2. Binary fusion

The binary fusion is the “heart” of each BPPM. A set ofk al-
gorithms is performed in parallel, givingk result images of
same size and resolution as the acquired and preprocessed
image. Then, a fusion procedure derives a binary image
from thesek images. The foreground (or Black pixels) of
that binary image are candidates for perceptual faults. Ex-
amples for the specification of a BPPM will be given below
(see section 4).



3.1.3. Fuzzy feature extraction

The Fuzzy Feature Fusion submodule derives the evalua-
tion from the binary fused image. At first, a Connected
Component Analysis (CCA) is performed in order to select
connected components from the binary fused image, which
are perceptual fault regions, and to remove noise that re-
mained from the binary fusion. Then, the remaining con-
nected components are measured (see figure 3) and a set
of absolute geometrical features is derived for each compo-
nent (e.g. height, width, area, perimeter, roundness). Also,
features are derived for the description of the component
distribution (e.g. number of components, variation of geo-
metrical component features).

  Area:
 173Pixel

  Perimeter:
   43Pixel 

 COG:
   (893,1712) 

Width: 23Pixel

Height: 23Pixel

Fig. 3. Measuring of binary patterns after CCA.

Then, these fuzzy values are fused by using an Ordered
Weighting Averaging (OWA) operator in order to get the
description of a single meta-component instead of the var-
ious descriptions of all components. The goal is to obtain
a global description of the elements under analysis instead
of the individual fault descriptions. This description is then
fuzzified when necessary by defining linguistic terms and
assigning fuzzy membership values

To summarize: the set of derived features at the end are
related to the binary fused imageas a whole: either they
describe the global distribution of the components, or they
describe a meta-component derived from the fusion of the
features of all single components.

3.1.4. Fuzzy feature fusion

Finally, for each perceptual fault class the fuzzy features are
fused into a value from[0; 1] by using the Choquet integral.

More formally: beai such a fuzzy feature, witha1 �
a2 � :: � an anda0 = 0, then the Choquet integral is
computed from the following formula:

(C)

Z
fd� =

nX
i=1

(ai � ai�1) � �(fx j f(x) � aig): (4)

The fuzzy feature fusion uses several parameters, which
have to be adapted to the specific goals of the BPPM: com-
ponent filtering parameters, membership functions, OWA
weights and the fuzzy measures for the Choquet integral.

Since all those parameters have a “meaning” in the sense
that the effect of their settings can be directly verified by the
experienced user, the task of parametrization of the Fuzzy
Feature Fusion submodule can be handled. However, adap-
tive procedures for the setting may be considered for future
works. So far, some experiments were done for the auto-
matic setting of the fuzzy measures for the Choquet inte-
gral by using an optimization technique based on quadratic
programming [5]. However, those experiments did not give
values as good as empirically adapted ones. This may lay on
the necessity for the optimization technique to have a clear
distinction between the memberships of the classes. In case
of unclear definition of them the quadratic programming de-
livers trivial solutions.

3.2. Testing modules

As already noted, the testing modules, which link the con-
secutive BPPMs, are optional design components. Their
main purpose is to bypass a BPPM computations, if there
is no evidence for the faults, which are processed by that
BPPM. This means, the testing module has to be imple-
mented as a fast testing routine based on reduced informa-
tion as e.g. histograms. The obvious advantage is to re-
duce the processing time for the whole framework. How-
ever, in some cases (as the low-contrast faults considered in
sec. 4.3), there will be no easy design of such a procedure.

4. DESIGN GUIDELINES FOR THE FRAMEWORK

So far, three basic designs of a BPPM have been identi-
fied. Those designs differ only in the steps until CCA is
performed, i.e. in the preprocessing, binarization and binary
fusion steps.

4.1. Strong-contrast localized faults

The setup for a local fault detection module is refering to
a strong contrast of the faults’ appearance. The acquired
images are preprocessed by using a highpass filter. Then,
only one binarization operation is applied, which may be an
intervall thresholding. Here, intervall thresholding means
that grayvalue intervalls are identified, for which the pixels
in the thresholded image are set to Black (0), and White
(1) for all pixels with grayvalues out of those intervalls (see
fig. 4).

Since there is just one binarization, no binary fusion is
necessary.

This is supposed to detect perceptual faults in the tex-
ture, the appearance of which is remarkably different from
the undisturbed texture (very dark or very bright). Also, the
faults are local in the sense that only a small, connected part
of the total image is covered by the fault area.

This kind of modules may cover the functional faults
among the perceptual faults (cracks, holes) as well and should
be used at the beginning of the processing chain.



(a)

(b)

(c)

Fig. 4. Processing of a BPPM for detecting strong-contrast
faults (holes in a texture): (a) acquired image, (b) highpass
filtered image, (c) binary fusion and CCA of the prepro-
cessed image.

4.2. Long-range faults

An important class of perceptual faults are long-range faults.
Here, the fault appearance is not related to a strong local
contrast, but to a distortion within the global distribution
of grayvalues within the image. Such faults may be de-
tected by employing the auto-lookup procedure (see section
2.2) based on the co-occurrence matrix of a subset of pixels
from the image (formally:I1 is the original image, andI2
is the original image shifted by the offset vector of the co-
occurrence matrix). This can be qualified as a novelty filter,
with dark regions indicating occurrences of grayvalue pairs,
which are seldom in the image.

The procedure is illustrated in fig. 5. From the acquired
image (no preprocessing is necessary), five co-occurrence
matrices are derived at five randomly located windows. Then,
for each co-occurrence matrix, the auto-lookup is performed
on the whole image. Bright regions in the auto-lookup im-
age stand for “typical” regions according to the grayvalue
distribution within the window, and dark regions for “un-
typical” ones.

Now, all five images are fused into a single one. In case
of the given example, the fusion procedure was simple: in

Cooc1 Cooc5Cooc4Cooc3Cooc2

Binary Fusion

Auto-Lookup Images

CCA

Original Image

Fig. 5. Auto-Lookup procedure.

case at least three out of the five images have a dark gray-
value at the same location, the pixel at that location in the
binary fused image is set to Black, White otherwise.

The fusion is necessary, since the random location may
lay on a fault boundary, thus giving ambiguous information
in the auto-lookup image.

The effect of the CCA can also be seen in fig. 5.

4.3. Low-contrast faults

A third important class of perceptual faults are related to
a very typical, but low contrast in the image grayvalues.
In any cases, they are as local as the faults considered in
sec. 4.1.

For their treatment, the already presented Lucifer2 frame-
work may be used. This subsection will give a short sum-
mary of the Lucifer2 approach.

The purpose of the Lucifer2 framework is to design tex-
ture filters. Trained by user-provided examples, the adapted
filters are able to separate a textured background from a
foreground structure. Possible applications for these tex-
ture filters are: texture fault detection, texture border de-
tection or handwriting extraction (on a bankcheck with tex-
tured background). These problems typically arise in fields
like visual surface inspection on fabrics or optical document
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Fig. 6. The Framework for 2D-Lookup based texture filter
generation.

preprocessing.
The framework (see fig. 6) is composed of (user- sup-

plied) original image, filter generator, operation images 1
and 2, result image, (user-supplied) goal image, 2D-Lookup
matrix, comparing unit and filter generation signal.

The framework can be thought of as being composed of
three (overlapping) layers.

(1) The instruction layer, which consists of the user-supplied
parts of the framework: original image and goal im-
age. The user may also supply other components (op-
eration 1, operation 2, 2D-Lookup matrix), for main-
tenance purposes.

(2) The algorithm layer performs the actual 2D-Lookup,
once all of its components (original image, operation
1, operation 2 and 2D-Lookup matrix) are given.

(3) The adaptation layer contains all adaptable components
of the framework (operation 1, operation 2, 2D-Lookup
matrix) and additional components for performing the
adaptation (comparison unit, filter generator).

For the instruction layer, the user interface has been de-
signed as simple as possible. The user instructs Lucifer2
by manually drawing a (binary) goal image from the orig-
inal image (by a photo retouching program as Photoshop).
In this image, texture background is set to White and tex-
ture foreground (e.g. the texture fault, handwriting on a
textured bankcheck background) to Black (see fig.7 for an
example). Rest of the approach is data-driven. No special
texture model has to be known by the user. There are no
further requirements for the goal image.

The algorithm layer performs the 2D-Lookup algorithm.
The algorithm decomposes the filter operation into a set of
partial steps, each of which might be adapted to meet the
user’s instruction.

Adaptation is considered an optimization problem, and
evolutionary algorithms [9] [3], esp. genetic programming
[15], are used for performing this adaptation. The fitness

(a) (b)

Fig. 7. Example for texture image containing fault (a) and
goal image, as given by the user (b).

function is computed with the degree of resemblance be-
tween result image of an individual-specified 2D-Lookup
and the goal image.

The Lucifer2 framework can be used to design thek

binarization procedures within a BPPM. For doing so, an
image part including the low-contrast perceptual fault area
is cutted from the image, and a binary goal image is made
by the user (note: those steps are done off-line and only
once during the design phase of a BPPM).

Then, Lucifer2 may runl > k times, and thek best
results are selected as binarization procedures.

Fig. 8 gives an example for the design of algorithms for
the detection of a class of contrast faults.

More details on Lucifer2 can be found in [10]. General-
ization issues of the designed filters are studied in [13].

5. PERFORMANCE EVALUATION

In this section, the issues of performance evaluation of the
proposed framework will be considered. Especially in this
case, where subjective decisions are to be adopted, the ques-
tion arises how to measure the quality of the adaptation. The
basis of our study was a pool of 110 natural collagen sheets
with different perceptual faults, which were inspected and
subjectively evaluated by human experts.

What we did first was to separate the sheets as good as
possible into the three classes. Afterwards we trained the
modules. For the strong-contrast faults we took into ac-
count the number of faults, their location, density and di-
mension. In figure 9 a graphical representation of the re-
sults based on the fusion of these properties is given. The
right, bright bar of each group indicates the number of el-
ements in the computer-generated group that were wrongly
classified. Independently of the mentioned problems, the
correspondence between the human decision and the one of
the computer is fair, but should become better by using a
bigger training pool.

Another well known graphical representation is shown
in figure 10.It shows the false acceptance and false rejec-
tion rate, also representing the strong-contrast faults. The
crossing point of these two plots gives the equal error rate
of about 21 %, which is a quite good result, if the complex-
ity in the appearance of the faults is considered. This rate
is widely used to demonstrate the performance of a system,
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Fig. 8. The Lucifer2 framework applied three times to the
design of a procedure for the detection of a low-contrast
fault.

though neglecting the mentioned problems. So, this number
doesn’t e.g. represent the stability of the system.

6. SUMMARY

A framework was presented for the processing of perceptual
faults and based on the binary texture processing paradigm.
The framework is established from a chain of separately
working binary pattern processing modules (BPPM). Each
BPPM is suited for a special class of perceptual faults. Its
processing starts from a preprocessed image and applies a
set ofk algorithms in parallel. Then, the processing result
images are fused into one binary image. A connected com-
ponent analysis solicits the patterns of the binary fused im-
age, which are indicating perceptual fault locations. Then,
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Fig. 9. Results of the fuzzy evaluation on the example of
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a set of fuzzy features is derived for the joint description
of global properties of the binary image, and the geometric
description of a special structure, a pseudo-component with
its features derived from aggregated features of all compo-
nents of the binary fused image. Hence, there is one fuzzy
feature set per image. These features are fused to a class
membership degree by using the Choquet integral. There is
one set of weights for the Choquet integral per class.

The class membership vectors are given to all following
BPPMs in the processing chain of the framework. For re-
ducing processing time, additional testing modules can be
used.

The framework has been used for the evaluation of tex-
tured materials composed of organic substances. There, the
special need for the processing of perceptual faults arose
and gave the motivation for the presented design. The pri-
mary goal was to have an approach for an objective repro-
duction of various subjective material evaluations, and to
provide a means for easy extension and reconfiguration of
the system according to changes in production technology
and perceptual fault importance.

The presented framework can be adapted to a broad range
of perceptual fault classes. Three configurations for per-
ceptual faults appearing as strong-contrasted, broad-ranged
or low-contrasted ones were given. Besides of a unique
fuzzy feature fusion approach, the BPPMs here are designed
from a (simple) thresholding for strong-contrast faults, auto-



lookup for broad-range faults, and from the recently pro-
posed Lucifer2 framework for the low-contrast faults. The
suitability of those designs has been noted elsewhere.

Further work will concentrate on the partial use of adap-
tive procedures for the various parameter settings of the
framework (besides of the one by genetic programming al-
ready in use for the Lucifer2 framework). First attempts
were made on the setting of the fuzzy features subset weights
for the Choquet integral.
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