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Abstract

This letter discusses the recent paper “Some technical remarks on the

proof of the ‘No Free Lunch’ theorem” [K0̈0]. In that paper, some tech-

nical issues related to the formal proof of the “No Free Lunch” (NFL)

theorem for search [WM95, WM97] were given. As a result of a discus-

sion among the authors, this letter explores the issues raised in that paper

more thoroughly. This includes the presentation of a simpler version of

the NFL proof, in accord with a suggestion made explicitly in [K0̈0] and

implicitly in [WM97]. It also includes the correction of an incorrect claim

made in [K0̈0] of a limitation of the NFL theorem. Finally, some thoughts

on future research directions for research into algorithm performance are

given.
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1 Introduction

This letter discusses a recent paper [K0̈0] concerning technical issues involved

in the proof of the “No Free Lunch” (NFL) theorems [WM95, WM97]. While

following the suggestion made in [K0̈0] and [WM97] for a shorter proof of a

result leading to the theorem, a claim made in [K0̈0] about circular reasoning

within the subsequent proof of the full theorem has to be corrected. In the next

section, the shorter proof is presented, and in the following section the incorrect

claim of circular reasoning is corrected.

2 A simpler proof

In [K0̈0] attention was drawn to the fact that [WM95] contained the outline of

a proof of a result needed to establish the NFL theorem, a proof that is simpler

than the one elaborated in detail in [WM95]. To flesh out this simpler proof,

consider two finite sets X and Y and the set of all cost functions f : X → Y .

Let m be a non-negative integer < |X|. Define dm as a set {(dx
m(i), dy

m(i) =

f(dx
m(i)))}, i = 1, . . . ,m where dx

m(i) ∈ X ∀ i and ∀ i, j, dx
m(i) 6= dx

m(j). We

are interested in (“data-driven”, or “blind”) deterministic1 search algorithms a

which assign to every possible dm an element of X \ dx
m:

dx
m+1(m + 1) = a[dm] 6∈ {dx

m}. (1)

Define Y (f,m, a) to be the sequence of m Y values produced by m successive

applications of the algorithm a to f . Let δ(., .) be the Kronecker delta function
1The analysis can be extended to also include stochastic algorithms. See [WM95, WM97]
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that equals 1 if its arguments are identical, 0 otherwise. Then the following

holds:

Lemma 1. For any algorithm a and any dy
m,

∑
f

δ(dy
m, Y (f,m, a)) = |Y ||X|−m.

Proof. Consider all cost functions f+ for which δ(dy
m, Y (f+,m, a)) takes the

value 1:

i) f+(a(∅)) = dy
m(1)

ii) f+(a[dm(1)]) = dy
m(2)

iii) f+(a[dm(1), dm(2)]) = dy
m(3)

. . .

where dm(j) ≡ (dx
m(j), dy

m(j)). So the value of f+ is fixed for exactly m distinct

elements from X. For the remaining |X|−m elements from X, the corresponding

value of f+ can be assigned freely. Hence, out of the |Y ||X| separate f , exactly

|Y ||X|−m will result in a summand of 1 and all others will be 0.

Note that from

∑
f

δ(dy
m, Y (f,m, a)) = |Y ||X|−m ≥ 1

immediately follows the universal possibility of algorithm deception: for any

algorithm a there is a cost function f such that in its first m steps a produces

the worst values from Y in a sequence.

3



3 Correction of a wrong claim

In [K0̈0] it was claimed that the proof of the NFL theorem presented in [WM95,

WM97] fails due to circular reasoning. That claim is incorrect. Here we present

a proof of the NFL theorem for deterministic algorithms based on Lemma 1

that hopefully clarifies the derivation presented in [WM95, WM97].

Consider any performance measure c(.), mapping sets dy
m to real numbers.

Theorem 1. For any two deterministic algorithms a and b, any value k ∈ R,

and any c(.),

∑
f

δ(k, c(Y (f,m, a))) =
∑

f

δ(k, c(Y (f,m, b))).

Proof. Since more than one dy
m may give the same value of the performance

measure k, for each k the l.h.s. is expanded over all those possibilities:

∑
f

δ(k, c(Y (f,m, a))) =

=
∑

f,dy
m∈Y m

δ(k, c(dy
m))δ(dy

m, Y (f,m, a)) (2)

=
∑

dy
m∈Y m

δ(k, c(dy
m))

∑
f

δ(dy
m, Y (f,m, a))

=
∑

dy
m∈Y m

δ(k, c(dy
m))|Y ||X|−m (by Lemma 1)

= |Y ||X|−m
∑

dy
m∈Y m

δ(k, c(dy
m)) (3)

The last expression does not depend on a.

The claim made in [K0̈0] refers to the first line of the proof, equation (2). It

was thought that the expansion was restricted to those values of dy
m that can be
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obtained from f by applying a, and only those. If, for whatever reason, that set

of dy
m did depend on a, then the expression in equation (2) would depend on a

as well. The concern was that this constituted circular reasoning. For proving

that a sum does not depend on a variable z, it is generally not sufficient to show

that the summand does not depend on z: it is also necessary to show that the

set of terms making up the sum does not depend on z as well. However, this

argument explicitly does not apply to the proof given here, since each of the

terms corresponding to an impossible dy
m simply provides an additional value of

0 to the sum. Therefore, it makes no difference whether the expansion includes

all possible dy
m.

4 On algorithm performance

To date many researchers have considered the NFL theorems from an almost

nihilisitc point of view, as establishing that all attempts to claim universal

applicability of any algorithm must be fruitless. Many references to this theorem

were put into the introductory parts of conference papers, instead of choosing it

as a research topic by itself. The discussion in [K0̈0] was an attempt to overcome

this situation and to re-consider some basic issues again.

There are still many questions open, and most of them are strongly related

to the way we understand computing itself. For example, despite the NFL

theorems, there are a priori distinctions in absolute measures for algorithm

performance, distinctions that are far from being completely understood. One
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example was given in [WM97], where a so-called “head-to-head minimax” dis-

tinction holds. Another simple case where such a head-to-head distinction holds

is when the game-theoretic technique of “strategy stealing” is employed by one

of a pair of search algorithms. In this scenario, for all timesteps after the first,

algorithm b samples whichever point algorithm a did one step before (unless

b’s already sampled that previous point, in which case it chooses an alterna-

tive point according to some unimportant pre-fixed process). So say we judge

each of the two algorithms’ performance by how many steps it takes to find a

point whose value exceeds some pre-set threshold value k. (Formally, m must

equal |X| for this to be a performance measure, i.e. for it to be a function of

Y (f,m, a).) Then for no f will b’s performance be more than 1 worse than a’s.

On the other hand, for some f ’s, due to its different first Y value, b will far

outperform algorithm a. This asymmetry between the algorithms holds despite

the NFL theorems.

Note that this kind of superiority of b over a is non-transitive. (This follows

from defining an infinite sequence of algorithms where each algorithm in the

sequence steals the strategies of its predecessor (and therefore outperforms that

predecessor), and then using the fact that the number of algorithms is finite,

so that the sequence must repeat.) Little more is known even about these

kinds of head-to-head minimax distinctions, never mind such distinctions in

general. In addition, in the context of supervised learning, there are many

other ways of contrasting algorithms without invoking a priori assumptions

about f [Wol96b] [Wol96a]. Many of them presumably have analogues in the
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search domain considered here.

A second class of interesting and open questions concerns the use of NFL-

like frameworks to elucidate the connection between well-tuned algorithms (or

poorly-tuned for that matter!) and the problems they are designed to solve.

Most attempts to date have analyzed the performance of specific algorithms

on a small set of problems. We believe it would be fruitful to explore the

implications of NFL in detail on small problems where the space of all possible

functions can easily be enumerated (see [Whi99] for a related approach).

We hope to see more research results in such directions in the near future.
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Figure 1: Definition of dm, dx
m and dy

m.
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Figure 2: Definition of a data-driven algorithm a.
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