
Universal Representation of Image Functions
by the Sprecher Construction

Mario Köppen1 and Kaori Yoshida2

1 Fraunhofer IPK, Pascalstr. 8-9, 10587 Berlin, Germany
mario.koeppen@ipk.fraunhofer.de

2 Kyushu Institute of Technology, 680-4 Kawazu, 820-8502 Iizuka City, Japan
kaori@ai.kyutech.ac.jp

Summary. This paper proposes a procedure for representing image functions by
a computation in two layers. It is recalled that the general function representation
needs more layers than two, using the Stone-Weierstrass theorem for approximation
in three layers, and the Kolmogorov theorem for representation in four layers. For
achieving representation in two layers only, the requirement on a continuous rep-
resentation has to removed. The Sprecher construction presented here is a general
procedure for yielding such a representation in two layers. It can be used to compress
images, to represent pixels and their neighborhoods directly, or to represent image
operators.

1 Introduction

This paper is concerned with the representation of a continuous, bounded
real-valued function of n variables by the superposition of functions of lower
number of variables, and how this representation applies to the representation
of image functions in image processing. The universal possibility of such a
representation is granted by the Kolmogorov theorem [4]. It was Hecht-
Nielsen [2], who rediscovered the importance of the Kolmogorov theorem
for the theoretical understanding of the universal representation abilities of
neural networks. The Kolmogorov theorem was also pointed out to be of
importance for other designs of soft computing, as e.g. normal forms in fuzzy
logic [6] [7]. The constructive aspects of this representation can be followed in
a line of studies presented so far e.g. in [8], [1], [10], [11] and [5].

The starting point is the Kolmogorov theorem (here in the notation used
by David Sprecher [10]):

Theorem 1 (Sprecher, 1996). Every continuous function f : In → R can
be represented as a sum of continuous real-valued functions:

f(x1, . . . , xn) =
2n∑

q=0

χq(yq). (1)



In this representation, the x1, . . . , xn are the parameters of an embedding of
In into R2n+1:

yq = ηq(x) =
n∑

p=1

λpψ(xp + qa) (2)

with a continuous real-valued function ψ and suitable constants λp and a. This
embedding is independent of f .

In [10] and [11], Sprecher gives a numerical procedure for computing the
“inner” function ψ and setting the “outer” function” χ. that was corrected in
order to give a continuous ψ function in [5].

The functions used in such a representation came out to be untractable in
a practical sense (due to the pseudo-fractal nature of the ”inner” function).
Regarding images, in [5] it was demonstrated how even the second stage of
approximating such a Kolmogorov representation needs intermediate stor-
age of 106 data objects, while the next stage would demand 109 data objects
to be stored. Even today, with more and more computer memory becoming
available, this technical demand is hard to meet.

In this paper, the numerical procedures are extended for the case of a
non-continuous representation, to have a means for representing general im-
age functions in image processing in a more practical manner. This paper is
organized as follows: section 2 summarizes what is known today about general
function approximation and representation. In section 3, the general results
of section 2 are extended and applied to images (i.e. image functions) for
yielding a simpler representation, once we do not demand the use of contin-
uous functions for superposition. That section also describes the Sprecher
construction for obtaining such a superposition. In section 4, the use of this
representation is demonstrated. Section 5 gives a short conclusion of the pre-
sented work.

2 Representation of Functions

An important aspect in the design of soft computing methods is the represen-
tation of functions. This has to be distinguished from the approximation of
functions. Representation stands for the exact computability of a function f
by the configuration of a certain fixed computation scheme.

A typical problem field, where we meet the question of function represen-
tation is Genetic Programming. Given a set of node and terminal functions,
from which functions are composed by tree structures, we are faced with the
question about the total set of functions that can actually be composed from
the given function set. Here, the compuation scheme is the tree structure.
Similar questions are related to function representation by a (fuzzy) neural
network, or the representation of control functions by fuzzy patches.



Here, we are considering the computability in layers of a given function as
a general represenations scheme. With f standing for a continuous function
of Rn into R, we define

Definition 1. The function f is said to be computable-in-one-layer if one of
the following conditions is fulfilled:

• f is a linear function f(x1, . . . , xn) = w0 + w1x1 + . . . + wnxn with real
values w0, w1, . . . , wn; or

• f is a function f(x) of one argument.

Definition 2. The function f is said to be computable-in-m-layers (m ≥ 2),
if one of the following conditions is fulfilled:

• f can be written as a linear combination of the form w0+w1f1(x1, . . . , xn)+
. . . + wkfk(x1, . . . , xn) with continuous functions fi that are computable-
in-(m− 1)-layers; or

• f can be represented in the form g(h(x1, . . . , xn)), where g is a continuous
function of one argument, and h is computable-in-(m− 1)-layers.

Given these definitions, two questions appear: the question about the min-
imal number of layers to compute any continuous function (if there is such
a minimum at all), and the minimal number of layers to compute functions
that can approximate any continuous function to any degree of precision.

The Stone-Weierstrass-Theorem gives an answer to the second ques-
tion, giving m = 3. The proof for this was provided by Hornik [3].

Theorem 2. Any continuous bounded function f : [0, 1]n → R can be approx-
imated by a function that is computable-in-3-layers.

In addition, we have (proof omitted here)

Theorem 3. There exists a continuous bounded function f : [0, 1]n → R that
can not be approximated by any function that is computable in 1 or 2 layers.

Thus, we know that any function can at least be approximated by a func-
tion that is computable in 3 layers. As an application, this ensures that a
perceptron with input, hidden and output layer suffices (given a suitable tran-
sition function, and assuming a bounded mapping from input to output) to
approximate any function with any degree of precision.

The more general question about the representation, i.e. the first question,
finds its answer in the Kolmogorov theorem, which ensures m to be not
larger than 4. By showing that functions like x1x2 · exp((x2

1 + x2
2)/2) are not

computable-in-3-layers (omitted here) we see that m = 4 is strict.

Theorem 4. Any continuous bounded function f : [0, 1]n → R is computable-
in-4-layers.



x1

x2

o11

o21

o12

o22

o13

o23

o14

o24

o15

o25

λ1

λ1

λ1

λ1

λ1

λ2

λ2

λ2

λ2

λ2

o1

o2

o3

o4

o5

o
f(x1,x2)         

Fig. 1. Graphical representation of the representation of a function of two arguments
by a Kolmogorov network. Thereby means opq = Φq(xp) the ”inner” function,

oq = gq

(∑
p
λpopq

)
the ”outer” function, and o =

∑
q
oq.

This theorem gave raise to the so-called Kolmogorov network, a neural
net that is able to represent any function mapping [0, 1]n into R (see fig. 1)
and that was initially introduced by Hecht-Nielsen [2].

In the following, we consider these aspects of computability for image
functions, where in practice we can relax from the requirement of having
continuous functions for the representation.

3 Universal Representation of Image Functions

Usually in software development, images are represented by buffers in the
working memory of the computer. This can be considered an unwinding of
the image in a row-by-row manner, starting with the memory cell of the pixel
(0, 0). This means, if the image is stored in a memory buffer starting at address
S, then we find the grayvalue (assuming one byte per pixel) of pixel (i, j) at
the address S+ j ·λ+ i with λ standing for the width of the image. Formally,
if f(x, y) represents the image function, and g[] the memory buffer:

f(i, j) = g[S + i+ λ · j]. (3)

This equals the computation of an image function in two layers. With respect
of the results summarized in the foregoing section, we may pose the question
if this is really sufficient to have a representation of an image function (given
that the Kolmogorov theorem states the need for at least four layers instead
of two).

At first we may observe that this simple representation fixes the resolution
of the image, thus it is naturally an approximation of the true image function.



Now we consider the following: Given a function φ : In → I and the
Banach space Sφ of all functions g[φ(x)], with g an aarbitrary but not nec-
essarily continuous function, mapping I = [0, 1] into I. A function φ1 is said
to be more efficient than a function φ2, if Sφ1 ⊃ Sφ2 . A function, for which
Sφ is equal to the Banach space S of all functions over I, is said to be max-
imal efficient. In our case, this would be a function that can provide the best
approximation to S by means of a computation in two layers.

We see that an image function representation according to eq. 3 for a
higher resolution is more efficient than for a lower resolution, but that there
is no finite maximal efficient function. However, for fixed resolution, this rep-
resentation φ(i, j) = i + λ · j is maximal efficient in the space of all image
functions of width λ. We find means like a finite lookup table to represent any
bounded image function by pixels. However, we can easily find other maximal
efficient representations, e.g. by any other total order of the image points (x, y)
(note that such a different ordering of the image points can help to improve
the weak representation of vertical pixel neighborhood in the image in the
row-wise unwinding, e.g. by using finite approximates of Peano space-filling
curves).

Regarding general image functions, independent of their resolution, we see
that the computation in two layers can not represent the image function, if
we assume the representing functions to be continuously. However, we may
revise the question about layer computability when we do not require contin-
uous functions. This was initially considered by David Sprecher [9] and was
answered by the following theorem:

Theorem 5. For any integer n ≥ 2 there exists real-valued, strictly monotone
functions hp(x) with 1 ≤ p ≤ n, which depend on n, having
(i) The function

h(x) =
n∑

p=1

hp(xp)

separates all points in In:

n∑
p=1

hp(xp) =
n∑

p=1

hp(yp)

if and only if xp = yp is valid for all feasible values of p.
(ii) Any continuous function of n variables f(x1, . . . , xn) with domain In can
be represented in the form

f(x1, . . . , xn) = g

[
n∑

p=1

hp(xp)

]
(4)

with a (usually non-continuous) function g.



The proof for this is based on a construction. Here, we show this construc-
tion (called Sprecher construction), the proof is more or less evident once
having this construction.

By [i1, i2, . . . , ik]γ we denote the sequence of digits of a representation
of a number dk ∈ I to the number base (radix) γ, with k positions after
decimal point. Excluding sequences [i1, . . .], having only digits γ − 1 from a
certain position on, thus we can represent any real number in [0, 1] in a unique
manner.

Now, the representation of a number in I by the base nn is composed into
n representations of numbers in I to the base n. If

x =
∞∑

r=1

ir
nr

(5)

then

hp(x) =
∞∑

r=1

ir
nnr−(p−1)

=
∞∑

r=1

ir · np−1

(nn)r
. (6)

Any digit ir from {0, . . . , nn − 1} of the representation of a number x ∈ I to
the base nn has a representation to the base n with maximum n digits:

ir =
n−1∑
s=0

irsn
s, (7)

where for any irs 0 ≤ irs < n holds. Thus, we also have

[i1, . . . , ik]nn = h([i11, . . . , ik1]n, . . . , [i1n, . . . , ikn]n) (8)

and this is exactly a bijection between In and I.
Example: With n = 2 we want to find the image of the point with dec-

imal (γ = 10) representation (0.625, 0.75). Using base 2, this point has the
representation (0.1012, 0.112) and it follows

h1(0.1012) =
1
4

+
1
43

h2(0.112) =
2
4

+
2
42
.

Thus
h[(0.625, 0.75)] =

3
4

+
2
16

+
1
64

= 0.890625.

Now we want to find the point onto which 0.78125 = 0.3024 is mapped. From
34 = 112, 04 = 002 and 24 = 102 by construction of two sequences of binary
digits from the first or second element of this representation

h−1(0.78125) = (0.1012, 0.1002) = (0.625, 0.5).

Given any f , the construction of g is simple now: replace any y ∈ I by
g(y) = f [h−1(y)].



4 Application

The Sprecher construction, as presented in the foregoing section, offers sev-
eral applications for representing functions in soft computing methods. We
may consider compression as an application here. Figure 2 shows an inter-
esting property. If we compute g(y) for an image, delete a number of entries
(means all values in an interval are replaced by a single value) and perform
the reverse transformation, we achieve a compressed representation of the
image. Being not really competitive to state-of-the-art compression methods
nowadays, we find this a simple approach with excellent performance up to
compression ratios 1 : 3 and acceptable until 1 : 10. This proves the better
representation ability of the Sprecher constructions for local neighborhoods
in the image.

100% 50% 30%

10% 2% 1%
Fig. 2. Compression quality of the Sprecher construction by deleting some points
g(y) and reconstruction from these reduced data sets. Upper left is the original
image.

The approach can be extended to the efficient representation of pixel neigh-
borhoods as well. By considering one pixel along with its four direct neighbors,
we can map the grayvalues assigned to these five pixel positions (after normal-
ization into the range [0, 1]) to a real number y ∈ I. Using a higher bit-depth
than 8bit (having 16bit almost technically feasible today) thus we can repre-
sent the same image by a pointwise representation of local neighborhoods (we
may propose to call this kind of picture elements as nexel).



One advantage of this representation, which comes out naturally when
considering the Sprecher construction is the better representation of image
sensor activations. We may note that an arbitrary image of y values may not be
mapped back to an image due to the inconsistency in the local neighborhood.
Each neighbor positions is represented by four other points in the mapped
image, and the reverse mapping may give different values here.

However, this pictures matches better with the technical procedure to
obtain an image from a sensing device: within a CCD chip, there is no such
real consistency in the neighborhood of a sensitive cell. Each cell is partially
activated from the neighboring cells during acquisition as well. Camera effects
like blurring are well-known artefacts of this technical procedure. We have a
rather unsymmetrical influence of neighboring cells onto each cell, and thus
the representation of cell neighborhoods instead of cells only has the potential
to give a better representation of the acquired image signal. By the reverse
Sprecher construction, the usual optical image can be constructed easily,
but other procedures may take advantage of the more complete neighborhood
representation as well.

In the same fashion, image operators can be represented by such a map-
ping. As an easy example, greyscale morphology, taking the maximum grey-
value in the neighborhood of a pixel as result of the transform at this pixels
positions, can be directly taken from this representation of each pixel neigh-
borhood.

5 Conclusion

In this paper, we have studied the representation of images in a formal man-
ner. The computability of layers, often employed already in soft computing
application, provides a general means for such a representation. From gen-
eral results about representation and approximation of functions, we learned
that any function can be approximated by functions that can be computed in
three layer to any degree of precision, and can be exactly represented by func-
tions that can be computed in four layers. Leaving out the requirement for
continuous representation, there is even a two-layer computation of any con-
tinuous function. The Sprecher constructions is one means to obtain such a
representation. It was demonstrated that on compressed versions local neigh-
borhoods of an image are represented better than in the default buffer-wise
manner used today. One other prospect here is the ability of representing pixel
neighborhoods in the image directly, which might support a better represen-
tation of the technical acquisition procedure in camera devices. Also, image
operators can be represented this way in a formal manner, for e.g. employing
search spaces of image operators.

The arguments given in this study will be followed by considerations of
this representation in image operation adaptation tasks.



References

1. Neil E. Cotter and Thierry J. Guillerm. The CMAC and a theorem of Kol-
mogorov. Neural Networks, 5:221–228, 1992.

2. Robert Hecht-Nielsen. Kolmogorov’s mapping neural network existence theo-
rem. In Proceedings of the First International Conference on Neural Networks,
volume III, pages 11–13. IEEE Press, New York, 1987.

3. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2:359–366, 1989.

4. Andrej Nikolajewitsch Kolmogorov. On the representation of continuous func-
tions of several variables by superpositions of continuous functions of one vari-
able and addition. Doklady Akademii Nauk SSSR, 114:679–681, 1957. (in Rus-
sian).

5. Mario Köppen. On the training of a kolmogorov network. In José R. Dorronsoro,
editor, Artificial Neural Networks - ICANN 2002, LNCS 2415, pages 474–479,
Madrid, Spain, August 2002, 2002. Springer-Verlag Heidelberg.

6. V. Kreinovich, H.T. Nguyen, and D.A. Sprecher. Normal forms for fuzzy logic
— an application of kolmogorov’s theorem. Technical Report UTEP-CS-96-8,
University of Texas at El Paso, Januar 1996.

7. H.T. Nguyen and V. Kreinovich. Kolmogorov’s theorem and its impact on soft
computing. In Ronald R. Yager and Janusz Kacprzyk, editors, The Ordered
Weighted Averaging operators. Theory and Applications., pages 3–17. Kluwer
Academic Publishers, 1997.

8. D.A. Sprecher. On the structure of continuous functions of several variables.
Transcations of the American Mathematical Society, 115(3):340–355, 1965.

9. D.A. Sprecher. A representation theorem for continuous functions of several
variables. Proceedings of the American Mathematical Society, 16:200–203, 1965.

10. D.A. Sprecher. A numerical implementation of Kolmogorov’s superpositions I.
Neural Networks, 9(5):765–772, 1996.

11. D.A. Sprecher. A numerical implementation of Kolmogorov’s superpositions II.
Neural Networks, 10(3):447–457, 1997.


